Skip to main content
Log in

17β-Estradiol Enhances the Flux of Cholesterol Through the Cholesteryl Ester Cycle in Human Macrophages

  • Published:
Bioscience Reports

Abstract

Estrogens have been shown to have many positive effects on the function of arterial wall, and recent evidence suggest that 17β-estradiol has a direct action in reducing the accumulation of cholesteryl ester in macrophages. The mechanisms underlying the effects of 17β-estradiol on foam cell formation, however are poorly understood. The aim of this study is to investigate the role of 17β-estradiol in the regulation of the cholesteryl ester cycle and cholesterol efflux in human macrophages. In addition, the influence of 17β-estradiol on apolipoprotein E (apoE) and lipoprotein lipase (LDL) secretion by the cells was also tested. Human Monocyte Derived Macrophages (HMDM), matured in the presence or the absence of 17β-estradiol, were loaded with [3H]-cholesteryl ester-labeled-acetyl LDL (low density lipoprotein) and the efflux of radioactivity into the medium was measured. The effect of 17β-estradiol on cellular activities of acyl coenzyme A: cholesterol acyl transferase (ACAT), and both neutral and acid cholesteryl ester hydrolase (CEH) and the secretion of apoE and LDL into the medium, were also studied. The results indicate that 17β-estradiol induces an increase in the amount of labeled cholesterol released from the cells and, the data obtained from the measurements of ACAT and CEH activities showed that, in estrogen-treated HMDM, the cholesteryl ester cycle favors the hydrolysis of lipoprotein cholesterol by CEH in comparison with its acylation by ACAT. In particular, for the first time a strong enhancement of neutral and acid CEH in human macrophages by 17β-estradiol, was demonstrated. ApoE and LDL secretion increased during the maturation of monocytes to macrophages, and was not modified by 17β-estradiol. In contrast, loading the cells with cholesterol by incubation in the presence of acetylated or oxidized LDL produced an increase in the levels of apoE secreted by both estrogen-treated and control macrophages. The activity of LPL found in the cell medium, on the other hand, in lipid loaded cells tended to be increased only in estrogen treated macrophages, suggesting that the effects of estrogen on unloaded macrophages are different from those produced on lipid-loaded macrophages. On the whole, the present findings suggest that one of the mechanisms by which 17β-estradiol acts to reduce cholesterol accumulation in macrophages is by increasing reverse cholesterol transport through the enhancement of the cholesteryl ester cycle, so that the generation of intracellular unesterified cholesterol for excretion from the cells is favored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Mendelsohn, M. E. and Karas, R. H. (1994) Curr. Opin. Cardiol. 9: 619–626.

    Google Scholar 

  2. Farhat, M. Y., Lavigne, M. G., and Ramwell, P. W. (1996) FASEB J. 10: 614–624.

    Google Scholar 

  3. Sullivan, J. M. and Fowlkes, L. P. (1996) Obstet. Gyneco. 87(suppl): 36–44.

    Google Scholar 

  4. Hulley, S. et al. (1998) JAMA 208: 605–618.

    Google Scholar 

  5. Dai, D. D. et al. (1996) Cardioûas. Res. 32: 980–985.

    Google Scholar 

  6. Zhu, X. D., Meekins, D., Bonet, B., and Knopp, R. H. (1993) Clin. Res. 41: 26A.

    Google Scholar 

  7. Sack, M. N., Rader, D. J., and Cannon, R. O. (1994) Lancet 343: 269–274.

    Google Scholar 

  8. Song, J., Wan, Y., Rolfe, B. E., Campbell, J. H., and Campbell, G. R. (1998) Atherosclerosis 140: 97–104.

    Google Scholar 

  9. Sulistiyani, St. Clair, R. W. (1997) Arterioscler. Thromb. Vasc. Biol. 17: 1691–1700.

    Google Scholar 

  10. McCrohon, J. A., Nakhala, S., Jessup, W., Stanley, K. K., and Celermarjer, D. S. (1999) Circulation 100: 2319–2325.

    Google Scholar 

  11. Gerrity, R. G. (1981) Am. J. Pathol. 103: 181–190.

    Google Scholar 

  12. St. Clair, R. W. (1997) Curr. Opin. Lipidol. 8: 281–286.

    Google Scholar 

  13. Chait, A., Iverius, P. H., Brunzell, J. D. (1982) J. Clin. Inûest. 69: 490–493.

    Google Scholar 

  14. Rosenfeld, M. E., et al. (1993) Arterioscler. Thromb. 13: 1382–1389.

    Google Scholar 

  15. Lucas, M., Iverius, P. H., Strickland, D. K., and Mazzone, T. (1997) J. Biol. Chem. 272: 13000–13005.

    Google Scholar 

  16. Huang, Y., von Eckardstein, A., Wu, S., Maeda, N., and Assman, G. (1994) Proc. Natl. Acad. Sci. USA 91: 1834–1838.

    Google Scholar 

  17. Mulder, M., Lombardi, P., Jansen, H., van Berkel, T. J. C., Frants, R. R., and Havekes, L. M. (1993) J. Biol. Chem. 268: 9369–9375.

    Google Scholar 

  18. Ji, Z. S., Brecht, W. J., Miranda, R. D., Hussain, M. M., Innerarity, T. L., and Mahley, R. W. (1993) J. Biol. Chem. 268: 10160–10167.

    Google Scholar 

  19. Linton, M. F. and Fazio, S. (1999) Curr. Opin. Lipidol. 10: 97–105.

    Google Scholar 

  20. Williams, K. J., Fless, G. M., Petrie, K. A., Synder, M. L., Brocia, R. W., and Swenson, T. L. (1992) J. Biol. Chem. 267: 13284–13292.

    Google Scholar 

  21. O'Brien, K. D., Gordon, D., Deeb, S., Ferguson, M., and Chait, A. (1992) J. Clin. Inûest. 89: 1544–1550.

    Google Scholar 

  22. Keidar, S., Kaplan, M., Rosenblat, M., Brook, G. J., and Aviram, M. (1992) Metabolism 41: 1185–1192.

    Google Scholar 

  23. Homma, H., et al. (2000) J. Biol. Chem. 275: 11404–11411.

    Google Scholar 

  24. Ellis, G. S., Lanza-Jacoby, S., Gow, A., and Kendrick, Z. V. (1994) J. Appl. Physiol. 77: 209–215.

    Google Scholar 

  25. Goldberg, D. I., Rumsey, W. L., and Kendrick, Z. V. (1984) Metabolism 33: 964–969.

    Google Scholar 

  26. Valette, A., Mercier, L., Benoit, V., Meignen, J. M., and Boyer, J. (1987) J. Steroid Biochem. 28: 445–477.

    Google Scholar 

  27. Chait, A. and Mazzone, T. (1982) Arteriosclerosis 2: 134–141.

    Google Scholar 

  28. Andreesen, A., Osterholz, J., Bodemann, H., Bross, K. J., Costabel, U., and Lohr, G. W. (1984) Blut 49: 195–202.

    Google Scholar 

  29. Berthois, Y., Katzenellenbogen, J. A., and Katzenellenbogen, B. S. (1986) Proc. Natl. Acad. Sci. USA 83: 2496–2500.

    Google Scholar 

  30. Eckert, R. L. and Katzenellenbogen, B. S. (1982) J. Biol. Chem. 257: 8840–8846.

    Google Scholar 

  31. Bravo, E. and Cantafora, A. (1989) Giorn. It. Chim. Clin. 14: 141–144.

    Google Scholar 

  32. Hixson, J. E. and Vernier, D. T. (1990) J. Lipid Res. 31: 545–548.

    Google Scholar 

  33. Havel, R. J., Eder, H. A., and Bragdon, J. H. (1955) J. Clin. Inûest. 34: 1345–1352.

    Google Scholar 

  34. Basu, S. K., Goldstein, J. L., Anderson, R. G. W., and Brown, M. S. (1976) Proc. Natl. Acad. Sci. USA 73: 3178–3182.

    Google Scholar 

  35. Gebicki, J., Jurgens, G., and Esterbauer, H. (1991) in Oxidatiûe Stress (H. Sies, ed.), Academic Press, London, San Diego, New York, pp. 371–397.

    Google Scholar 

  36. Esterbauer, H., Striegl, G., Phil, H., and Rotheneder, M. (1986) Free Rad. Res. Commun. 6: 67–75.

    Google Scholar 

  37. Basu, S. K., Goldstein, J. L., and Brown, M. S. (1986) Methods Enzymol. 46: 241–261.

    Google Scholar 

  38. Cullen, P., Cignarella, A., Brennhausen, B., Mohr, S., Assumann, G., and von Eckardstein, A. (1998) J. Clin. Inûest. 101: 1670–1677.

    Google Scholar 

  39. Martinez, J. M. and Botham, K. M. (1990) Biochim. Biophys. Acta 1047: 90–98.

    Google Scholar 

  40. Suckling, K. E., Boyd, G. S., and Smellie, C. G. (1982) Biochim. Biophys. Acta 710: 154–163.

    Google Scholar 

  41. Botham, K. M., Avella, M., Cantafora, A., and Bravo, E. (1997) Biochim. Biophys. Acta 1349: 257–263.

    Google Scholar 

  42. Bradford, M. (1976) Anal. Biochem. 72: 248–252.

    Google Scholar 

  43. Hough, J. L. and Zilversmit, D. B. (1986) Arteriosclerosis 30: 57–63.

    Google Scholar 

  44. Adams, M. R., et al. (1990 Arteriosclerosis 10: 1051–1057.

    Google Scholar 

  45. Azhar, S., Kahn, I., and Gibori, G. (1989) Biol. Reprod. 40: 961–971.

    Google Scholar 

  46. Ross, A. C. and Rowe, J. F. (1984) Proc. Soc. Exp. Biol. Med. 176: 42–47.

    Google Scholar 

  47. Brown, M. S. and Goldstein, J. L. (1983) Ann. Reûiew Biochem. 52: 223–261.

    Google Scholar 

  48. Sabbiah, M. T. R. (1977) Steroids 30: 259–275.

    Google Scholar 

  49. Tomita, T. et al. (1996) Biochim. Biophys. Acta 300: 210–218.

    Google Scholar 

  50. Yancey, P. G. and St. Clair, R. W. (1992) Arterioscler. Thromb. 12: 1291–1304.

    Google Scholar 

  51. Miura, S., et al. (1997) Arterioscler. Thromb. Vasc. Biol. 17: 3033–3040.

    Google Scholar 

  52. Hakamata, H., Miyazaki, A., Sakui, M., Suginohara, Y., Sakamoto, Y. I., and Horiushi, S. (1994) Arterioscler. Thromb. 14: 1860–1865.

    Google Scholar 

  53. Bellosta, S., et al. (1995) J. Clin. Inûest. 96: 2170–2179.

    Google Scholar 

  54. Basu, S. K., Brown, M. S., Ho, Y. K., Havel, R. J., and Goldstein, J. L. (1981) Proc. Natl. Acad. Sci. USA 78: 7545–7549.

    Google Scholar 

  55. Basu, S. K., Ho, Y. K., Brown, M. S., Bilheimer, D. W., and Anderson, R. G. W. (1982) J. Biol. Chem. 257: 9788–9795.

    Google Scholar 

  56. Mazzone, T., Basheeruddin, K., and Poulos, C. (1989) J. Lipid Res. 30: 1055–1064.

    Google Scholar 

  57. Duan, H. D., Lin, C. Y., and Mazzone, T. (1997) J. Biol. Chem. 49: 31156–31162.

    Google Scholar 

  58. Stivastava, R. A., Krul, E. S., Lin, R. C., and Schonfeld, G. (1997) Mol. Cell. Biochem. 173: 161–68.

    Google Scholar 

  59. Stivastava, R. A., et al. (1997) J. Biol. Chem. 272: 33360–33366.

    Google Scholar 

  60. Stengel, D., et al. (1988) Arterioscler. Thromb. Vasc. Biol. 18: 1172–1180.

    Google Scholar 

  61. Zilversmit, D. B. (1973) Circ. Res. 33: 633–638.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Napolitano, M., Blotta, I., Montali, A. et al. 17β-Estradiol Enhances the Flux of Cholesterol Through the Cholesteryl Ester Cycle in Human Macrophages. Biosci Rep 21, 637–652 (2001). https://doi.org/10.1023/A:1014721026280

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014721026280

Navigation