Skip to main content
Log in

Transport Equations for Photon Flow Exploiting the Theory of Markov Processes with Random Structure Part 1: Derivation of Basic Equations

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

A representation of transport equations is developed describing photon flow or other processes with similar properties. The transport equations are derived through a Markov stochastic approach formulated by a set of stochastic differential equations. The proposed approach provides a two-step description of the photon flow. In the first step, the equations for the probability density distribution function (PDF) of the single photon coordinates are found. The second step contains the convolution in time of the PDF to obtain the density distribution of the photon flow. This representation is necessary to apply appropriate analytical methods for the determination of the photon flow characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. L. Stratonovich, Topics in the Theory of Random Noise I & II (Gordon and Breach, New York, 1967).

    Google Scholar 

  2. V. I. Tichonov and M. A. Mironov, Markov Processes (in Russian) (Sov. Radio, Moskau, 1977).

    Google Scholar 

  3. N. G. van Kampen, Stochastic Processes in Physics and Chemistry (Elsevier North-Holland, Amsterdam, 1992).

    Google Scholar 

  4. H. Risken, The Fokker-Planck Equation (Springer, Berlin, 1989).

    Google Scholar 

  5. C. Cercignani, The Boltzmann Equation and Its Applications (Springer, New York, 1988).

    Google Scholar 

  6. E. E. Lewis and W. F. Miller, Jr., Computational Methods for Neutron Transport (American Nuclear Society, La Grange Park, 1993).

    Google Scholar 

  7. W. Greenberg and J. Polewczak (eds.), Modern Mathematical Methods in Transport Theory, vol 51 of Operator Theory, Advances and Applications (Birkhauser Verlag, Basel, 1991).

    Google Scholar 

  8. M. M. R. Williams, Mathematical Methods in Transport Theory (Wiley, New York, 1971).

    Google Scholar 

  9. I. Lux and L. Koblinger, Monte Carlo Particle Transport Methods (CRC Press, Boca Rota, 1991).

    Google Scholar 

  10. L. L. Carter and E. D. Cashwell, Particle Transport Simulation with the Monte Carlo Method (Technical Information Center, Office of Public Affairs, U.S. Energy Research and Development Administration, Springfield, 1975).

    Google Scholar 

  11. B. G. Carlson and K. D. Lathrop. Transport theory—the method of discrete ordinates. In H. Greenspan, C. N. Kelber, and D. Okrent (eds.), Computing Methods in Reactor Physics (Gordon and Breach, New York, 1968).

    Google Scholar 

  12. K. M. Case and P. F. Zweifel, Linear Transport Theory (Addison-Wesley, Reading, 1967).

    Google Scholar 

  13. U. Fano, V. L. Spencer, and M. T. Berger, Penetration and Diffusion of X-Rays (Springer, Berlin, 1959).

    Google Scholar 

  14. H. Goldstein, Fundamental Aspects of Reactor Shielding (Addison-Wesley, Reading, 1959).

    Google Scholar 

  15. N. Sasamoto and K. Takeuchi. Direct integration method for solving the neutron transport equation in three-dimensional geometry. Nucl. Sci. Eng., 80:554-569 (1982).

    Google Scholar 

  16. V. M. Artemiev, Theory of Dynamic Systems with Random Structure (in Russian) (Vishaya Shkola, Minsk, 1978).

    Google Scholar 

  17. V. M. Artemiev and A. V. Ivanovsky, Discrete Control Systems with Random Time Discretization (in Russian) (Energoatomizdat, Moskau, 1986).

    Google Scholar 

  18. B. Williams, Compton Scattering (McGraw-Hill, London, 1977).

    Google Scholar 

  19. S. W. Loversey and S. P. Collins, X-Ray Scattering and Absorption by Magnetic Materials (Clarendon Press, Oxford, 1996).

    Google Scholar 

  20. B. Davision and J. B. Sykes, Neutron Transport Theory (Clarendon Press, Oxford, 1957).

    Google Scholar 

  21. J. E. Kolassa, Series Approximation Methods in Statistics (Springer, New York, 1994).

    Google Scholar 

  22. I. E. Kazakov and S. V. Malchikov, Stochastic System Analysis in the Phase Space (in Russian) (Nauka, Moskau, 1983).

    Google Scholar 

  23. A. Kolmogorov, Zur Theorie der stetigen zufälligen Prozesse Math. Ann., 108:149-160 (1933).

    Google Scholar 

  24. A. Kolmogorov, Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung, Math. Ann., 104:415-458 (1931).

    Google Scholar 

  25. W. Feller, Zur Theorie der stochastischen Prozesse, Math. Ann., 113:114-160 (1936).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tillack, GR., Artemiev, V.M. & Naumov, A.O. Transport Equations for Photon Flow Exploiting the Theory of Markov Processes with Random Structure Part 1: Derivation of Basic Equations. Journal of Nondestructive Evaluation 20, 153–161 (2001). https://doi.org/10.1023/A:1014717325561

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014717325561

Navigation