Skip to main content
Log in

Spectral analysis of transition metal-doped MgO “matched emitters” for thermophotovoltaic energy conversion

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A new, thermally excited Co/Ni-doped MgO ceramic emitter for TPV energy conversion is described in this work, and termed the “matched emitter” because its emissive power spectrum is very efficiently matched with the portion of the electromagnetic spectrum that can be converted directly into electrical energy by infrared responding GaSb photovoltaic cells. Ligand Field Theory calculations are used to estimate the crystal field splitting energies at high temperatures for Co and Ni-doped MgO matched emitters. Experimental measurements of the high temperature (1300–1400°C) emissive power spectrums for Co and Ni-doped MgO emitters are compared with predictions obtained from ligand field calculations for what is believed to be the first time. It was found that crystal field splitting energies of 10 Dq = 9070 cm−1 represented the “best fit” for the Co-doped MgO high temperature emissive power spectrum, and 10 Dq = 7950 cm−1 for the Ni-doped MgO spectrum. These values are only slightly lower than values reported for corresponding single crystal, transition metal doped laser materials that were measured at or well below room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. G. FERGUSON and F. DOGAN, J. Mater. Sci. 36 (2001) 137.

    Google Scholar 

  2. Idem., Materials Science and Engineering B 83 (2001) 35.

  3. T. J. COUTTS, Renewable and Sustainable Energy Reviews 3 (1999) 77.

    Google Scholar 

  4. A. SCHOCK and V. KUMAR, in 1st NREL, Conference on Thermophotovoltaic Generation of Electricity, AIP Conf. Proc. 321, Copper Mountain, CO, 1994, edited by T. J. Coutts and J. P. Benner (American Institute of Physics, 1995) p. 139.

  5. D. L. CHUBB, B. S. GOOD and R. A. LOWE, in 2nd NREL Conference on Thermophotovoltaic Generation of Electricity, AIP Conf. Proc. 358, Colorado Springs, CO, 1995, edited by J. P. Benner, T. J. Coutts, D. S. Ginley (American Institute of Physics, 1996) p. 181.

  6. SUNDARAM, S. B. SABAN, M. D. MORGAN, W. E. HORNE, B. D. EVANS, J. R. KETTERL, M. B. Z. MOROSINI, N. B. PATEL and H. FIELD, in 3rd NREL Conference on Thermophotovoltaic Generation of Electricity, AIP Conf. Proc. 401, Colorado Springs, CO, 1997, edited by T. J. Coutts, C. S. Allman and J. P. Benner (American Institute of Physics, 1997) p. 105.

  7. E. KITTL, in Proc. 20th Annual Power Sources Conference (PSC Publ. Comm., Red Bank, NJ, May 1966) p. 178.

    Google Scholar 

  8. G. E. GUAZZONI, Applied Spectroscopy 26 (1972) 60.

    Google Scholar 

  9. Z. CHEN, P. L. ADAIR and M. F. ROSE, in 3rd NREL Conference on Thermophotovoltaic Generation of Electricity, AIP Conf. Proc. 401, Colorado Springs, CO, 1997, edited by J. P. Benner, T. J. Coutts and D. S. Ginley (American Institute of Physics, 1997) p. 181.

  10. L. G. FERGUSON, Ph.D. Dissertation, Department of Materials Science and Engineering, University of Washington, March 2000.

  11. K. NASSAU, “The Physics and Chemistry of Color—The Fifteen Causes of Color” (Wiley, New York, 1983).

    Google Scholar 

  12. Y.-M. CHIANG, D. P. BIRNIE I I I and W. D. KINGERY, “Physical Ceramics” (John Wiley and Sons, 1997).

  13. R. H. FRENCH, J. Amer. Ceram. Soc. 73 (1990) 477.

    Google Scholar 

  14. L. L. HENCH and J. K. WEST, “Principles of Electronic Ceramics” (Johns Wiley and Sons, New York, 1990).

    Google Scholar 

  15. P. A. COX, “Transition Metal Oxides” (Oxford Science Publications, 1992).

  16. G. TIMMER and G. BORSTEL, Physical Review B 43 (1991) 5098.

    Google Scholar 

  17. K. W. BLAZEY, Physica 89B (1977) 47.

    Google Scholar 

  18. A. M. STONEHAM and M. J. SANGSTER, Phil. Mag. B 43 (1981) 609.

    Google Scholar 

  19. K. W. BLAZEY, J. Phys. Chem. Solids 38 (1977) 671.

    Google Scholar 

  20. M. KUNZ and C. KLINGSSHIRN, Materials Chemistry and Physics 25 (1990) 27.

    Google Scholar 

  21. G. R. FOWELS, “Introduction to Modern Optics” (Holt, Reinehart and Winston, New York, NY, 1975).

    Google Scholar 

  22. Y. TANABE and S. SUGANO, J. Phys. Soc. Japan 9 (1954) 753, 766.

    Google Scholar 

  23. W. LOW, Physical Review 109 (1958) 256.

    Google Scholar 

  24. B. N. FIGGIS, “Introduction to Ligand Fields”(Wiley, NewYork, NY, 1966).

    Google Scholar 

  25. R. PAPPALARDO, D. L. WOOD and R. C. LINARES, JR., The Journal of Chemical Physics 35 (1961) 2041.

    Google Scholar 

  26. W. LOW, Physical Review 109 (1958) 247.

    Google Scholar 

  27. R. PAPPALARDO, D. L. WOOD and R. C. LINARES, JR., The Journal of Chemical Physics 35 (1961) 1460.

    Google Scholar 

  28. B. D. BIRD, G. A. OSBORNE and P. J. STEPHENS, Physical Review B 5 (1972) 1800.

    Google Scholar 

  29. R. MONCORGE' and T. BENYATTOU, Physical Review B 37 (1988) 9186. Received 4 June and accepted 29 November 2001 1308

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferguson, L.G., Dogan, F. Spectral analysis of transition metal-doped MgO “matched emitters” for thermophotovoltaic energy conversion. Journal of Materials Science 37, 1301–1308 (2002). https://doi.org/10.1023/A:1014599924372

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014599924372

Keywords

Navigation