Skip to main content
Log in

Theory And Measurements For Turbulence Spectra And Variances In The Atmospheric Neutral Surface Layer

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Predictions from a new theory for high Reynolds number turbulent boundary layers during near-neutral conditions are shown to agree well with measurements of atmospheric surface-layer variances and spectra. The theory suggests surface-layer turbulence is determined by detached eddies that largely originate in the shearing motion immediately above the surface layer; as they descend into this layer, they are strongly distorted by the local shear and impinge onto the surface. Because the origin of these eddies is non-local, they are similar to those described in previous studies as `inactive' turbulence. However, they are, in fact, dynamically highly active, supplying the major mechanism for the momentum transport, including upward bursting on the time scale of the larger eddies. The vertical velocity results show that the variance and the low frequency parts of spectra increase with height in the surface layer, while in the self similar (k1 -1) range the streamwise low frequency components are approximately constant with height. These large-scale longitudinal eddies extend to a length Λs, which is equal to the boundary-layer height near the surface andincreases linearly to a maximum of about three times the boundary-layer height at roughly 15 m and decreases in the upper parts of the surface layer. This lower part of the surface layer, the eddy surface layer, is the region in which the eddies impinging from layers above are strongly distorted. This new result for the atmospheric boundary layer has practical application for calculating fluctuating wind loads on structures and lateral dispersion of pollution from local sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • BASIS: 2000, Second Annual Report from the Meteorology Group, Uppsala University to the Euproject BALTIC-BASIS (Baltic Sea Ice Study), Contract No. MAS-CT97-0117.

  • Bradshaw, P.: 1967L 'Inactive Motion and Pressure Fluctuations in Turbulent Boundary Layers', J. Fluid Mech. 30(Part 2), 241-258.

    Google Scholar 

  • Coelho, S. L. V. and Hunt, J. C. R.: 1989, 'Vorticity Dynamics in the near Field of Strong Jets in Crossflows', J. Fluid Mech. 200, 95-120.

    Google Scholar 

  • Davenport, A. G.: 1961, 'The Spectrum of Horizontal Gustiness near the Ground in High Wind Conditions', Quart. J. Roy. Meteorol. Soc. 87, 194-211.

    Google Scholar 

  • Dyer, A. J.: 1974, 'A Review of Flux-Profile Relationships', Boundary-Layer Meteorol. 7, 363-372.

    Google Scholar 

  • Falco, R. E.: 1982, 'A Synthesis and Model of Turbulence Structure in the Wall Region', in Zoran P. Zaric (ed.), Structure of Turbulence in Heat and Mass Transfer, Hemisphere Publ. Co., Washington.

    Google Scholar 

  • Foster, R. C.: 1997, 'Structure and Energetics of Optimal Ekman Layer Perturbations', J. FluidMech. 333, 97-123.

    Google Scholar 

  • Foster, R. C. and Drobinski, P.: 2000, 'Near-Surface Streaks: Comparison of LES with Theory', in Proceedings, 14th Symposium on Boundary Layers and Turbulence, Aspen, Co, 7-11 August, 2000, pp. 499-502

  • Gage, K. S. and Nastrom, G. D.: 1986, 'Theoretical Interpretation of Atmospheric Wavenumber Spectra of Wind and Temperature Observed by Commercial Aircraft during GASP', J. Atmos. Sci. 43, 729-740.

    Google Scholar 

  • Geernaert, G. L. and Plant, W. J.: 1990, Surface Waves and Fluxes, Vol. 1, Current Theory, Kluwer Academic Publishers, Norwell, MA, 336 pp.

    Google Scholar 

  • Haugen, D. A., Kaimal, J. C., and Bradley, E. F.: 1971, 'An Experimental Study of Reynolds Stress and Heat Flux in the Atmospheric Surface Layer', Quart. J. Roy. Meteorol. Soc. 97, 168-180.

    Google Scholar 

  • Högström, U.: 1982, 'A Critical Evaluation of the Aerodynamical Error of a Turbulence Instrument', J. Appl. Meteorol. 21, 1838-1844.

    Google Scholar 

  • Högström, U.: 1990, 'Analysis of Turbulence Structure in the Surface Layer with a Modified Similarity Theory Formulation for Neutral Conditions', J. Atmos. Sci. 47, 1949-1972.

    Google Scholar 

  • Högström, U.: 1992, 'Further Evidence of Inactive Turbulence in the Near Neutral Atmospheric Surface Layer', in Proceedings, 10th Symposium of Turbulence and Diffusion, 29 Sept.-2 Oct. 1992, Portland, OR, pp. 188-191.

  • Högström, U. and Bergström, H.: 1996, 'Organized Turbulence Structures in the Near-Neutral Surface Layer', J. Atmos. Sci. 53, 2452-2464.

    Google Scholar 

  • Högström, U., Smedman, A., and Bergström, H.: 1999, 'A Case Study of Two-Dimensional Stratified Turbulence', J. Atmos. Sci. 56, 959-976.

    Google Scholar 

  • Högström, U., Bergström, H., Smedman, A., Halldin, S., and Lindroth, A.: 1989, 'Turbulent Exchange above a Pine Forest. I: Fluxes and Gradients', Boundary-Layer Meteorol. 49, 197-217.

    Google Scholar 

  • Hunt, J. C. R.: 1984, 'Turbulence Structure in Thermal Convection and Shear-Free Boundary Layers', J. Fluid Mech. 138, 161-184.

    Google Scholar 

  • Hunt, J. C. R. and Carlotti, P.: 2001, 'Statistical Structure of the High Reynolds Number Turbulent Boundary Layer', Flow, Turbulence, Combustion, in press.

  • Hunt, J. C. R. and Durbin, P. A.: 1999, 'Perturbed Vortical Layers and Shear Sheltering', Fluid Dyn. Res. 24, 375-404.

    Google Scholar 

  • Hunt, J. C. R. and Morrison, J. F.: 2000, 'Eddy Structure in Turbulent Boundary Layers', Euro J. Mech. B-Fluids 19, 673-694.

    Google Scholar 

  • Hunt, J. C. R., Moin, P., Lee, M., Moser, R. D., Spalart, P., Mansour, N. N., Kaimal, J. C., and Gaynor, E.: 1989, 'Cross Correlations and Length Scales in Turbulent Flows near Surfaces', in H. Fiedler and H. Fernholtz (eds.), Advances in Turbulence, Vol. 2, Springer-Verlag, pp. 128-134.

  • Johansson, C., Smedman, A., Högström, U., Brasseur, J. G., and Khanna, S.: 2001, 'Critical Test of Monin-Obukhov Similarity during Convective Conditions', J. Atmos. Sci. 58, 1549-1566.

    Google Scholar 

  • Kaimal, J. C., Wyngaard, J. C., Izumi, Y., and Coté, O. R.: 1972, 'Spectral Characteristics of Surface-Layer Turbulence', Quart. J. Roy. Meteorol. Soc. 98, 563-589.

    Google Scholar 

  • Katul, G. and Chu, C.-R.: 1998, 'A Theoretical and Experimental Investigation on Energy-Containing Scales in the Dynamic Sublayer of Boundary-Layer Flows', Boundary-Layer Meteorol. 86, 279-312.

    Google Scholar 

  • Kim, K. C. and Adrian, R. J.: 1999, 'Very Large-Scale Motion in the Outer Layer', Phys. Fluids 11, 417-422.

    Google Scholar 

  • Mann, J.: 1994, 'The Spatial Structure of Neutral Atmospheric Surface-Layer Turbulence', J. Fluid Mech. 273, 141-168.

    Google Scholar 

  • Marusic, I. and Perry, A. E.: 1995, 'AWake Model for the Turbulence Structure of Boundary Layers. Part 2. Further Experimental Support', J. Fluid Mech. 298, 389-407.

    Google Scholar 

  • Moeng, C.-H. and Sullivan, P. P.: 1994, 'A Comparison of Shear-and Buoyancy-Driven Planetary Boundary Layer Flow', J. Atmos. Sci. 51, 999-1022.

    Google Scholar 

  • Monin, A. S. and Yaglom, A. M.: 1971, Statistical Fluid Mechanics, Vol. 1, English translation, The MIT Press, Cambridge, MA, 769 pp.

  • Panofsky, H. A.: 1969, 'Spectra of Atmospheric Variables in the Boundary Layer', Radio Sci. 4, 1101-1109.

    Google Scholar 

  • Panofsky, H. A., Tennekes, H., Lenschow, D. H., and Wyngaard, J. C.: 1977, 'The Characteristics of Turbulent Velocity Components in the Surface Layer under Convective Conditions', Boundary-Layer Meteorol. 11, 355-361.

    Google Scholar 

  • Perot, B. and Moin, P.: 1995, 'Shear-Free Turbulent Boundary Layers. Part 1. Physical Insights into Near-Wall Turbulence', J. Fluid Mech. 295, 199-227.

    Google Scholar 

  • Perry, A. E. and Abell, C. J.: 1977, 'Asymptotic Similarity of Turbulence Structures in Smooth-and Rough-Walled Pipes', J. Fluid Mech. 79, 785-789.

    Google Scholar 

  • Perry, A. E., Henbest, S., and Chong, M. S.: 1986, 'A Theoretical and Experimental Study of Wall Turbulence', J. Fluid Mech. 165, 163-199.

    Google Scholar 

  • Robinson, S. K.: 1991, The Kinematics of Turbulent Boundary Layer Structure, NASA Technical Memo. 103859, Ames Research Center, Moffet Field, CA, 479 pp.

    Google Scholar 

  • Sandham, N. D. and Kleiser, L.: 1992, 'The Late Stages of Transition to Turbulence in Channel Flow', J. Fluid Mech. 245, 319-348.

    Google Scholar 

  • Smedman, A.: 1991a, 'Some Turbulence Characteristics in Stable Atmospheric Boundary Layer Flow', J. Atmos. Sci. 48, 856-868.

    Google Scholar 

  • Smedman, A.: 1991b, 'Occurrence of Roll Circulations in a Shallow Boundary Layer', Boundary-Layer Meteorol. 57, 343-358.

    Google Scholar 

  • Smedman, A., Högström, U., Bergström, H., Rutgerson, A., Kahma, K. K., and Pettersson, H.: 1999, 'A Case Study of Air-Sea Interaction during Swell Conditions', J. Geophys. Res. 104, 25,833-25,851.

    Google Scholar 

  • Smedman, A., Tjernström, M., and Högström, U.: 1994: The Near-Neutral Marine Atmospheric Boundary Layer with No Surface Shearing Stress: A Case Study', J. Atmos. Sci. 51, 3399-3411.

    Google Scholar 

  • Smedman-Högström, A. and Högström, U.: 1975, 'Spectral Gap in Surface-Layer Measurements', J. Atmos. Sci. 32, 340-350.

    Google Scholar 

  • Smith, S. D. and Banke, E. G.: 1975, 'Variation of the Sea Surface Drag Coefficient with Wind Speed', Quart. J. Roy. Meteorol. Soc. 101, 665-673.

    Google Scholar 

  • Spalart, P. R.: 1988, 'Direct Numerical Simulation of a Turbulent Boundary Layer up to Re? = 1410', J. Fluid Mech. 187, 61-98.

    Google Scholar 

  • Tiederman, W. G.: 1989, 'Eulerian Detection of Turbulent Bursts', in S. J. Kline and N. H. Afgan (eds.), Near Wall Turbulence. Proceedings of the Z. Zoriac Memorial Conference 1988, Hemisphere, pp. 874-887.

  • Townsend, A. A.: 1961, 'Equilibrium Layers and Wall Turbulence', J. Fluid Mech. 11, 97-120.

    Google Scholar 

  • Townsend, A. A.: 1976, The Structure of Turbulent Shear Flow, 2nd edn., Cambridge University Press, Cambridge, 429 pp.

    Google Scholar 

  • Wyngaard, J. C. and Coté, O. R.: 1972, 'Cospectral Similarity in the Atmospheric Surface Layer', Quart. J. Roy. Meteorol. Soc. 98, 590-603.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Högström, U., Hunt, J.C.R. & Smedman, AS. Theory And Measurements For Turbulence Spectra And Variances In The Atmospheric Neutral Surface Layer. Boundary-Layer Meteorology 103, 101–124 (2002). https://doi.org/10.1023/A:1014579828712

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014579828712

Navigation