Skip to main content
Log in

Evolution of Lambdoid Replication Modules

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Comparison of the putative iteron-binding proteins of lambdoid phages allows us to propose that in the case of lambdoid replication modules, the units on which natural selection acts do not coincide with the open reading frames. Rather, the first replication gene is split into two segments, and its 3′ part (corresponding to the C-terminal domain of the iteron-binding protein) forms one unit with the second gene. We also propose from the phylogenetic analysis of phage-encoded homologs of E. coli DnaB and DnaC, that the recombination with the host sequences is not frequent. Accessory ATP-ases for helicase loading (E. coli DnaC homologs) may not be universal replication proteins. Our analysis may suggest that the bacterial helicase loaders might be of phage origin. The comparison of DnaC homologs of enterobacteria and enterobacterial phages supports the experimental data on residues important in interaction with DnaB. We propose that construction of plasmids carrying the replication origins of lambdoid prophages could be useful not only in further research on DNA replication but also on the role of these prophages in shuttling genes for bacterial virulence. The phage replication sequences could be also useful for identification of clinical enterobacterial isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hendrix R.W., Smith M.C., Burns R.N., Ford M.E., and Hatfull G.F., Proc Natl Acad Sci USA 96, 2192-2197, 1999.

    Google Scholar 

  2. Brussow H. and Desiere F., Mol Microbiol 39, 213-222, 2001.

    Google Scholar 

  3. Hatfull G.F. and Sarkis G.J., Mol Microbiol 7, 395-405, 1993.

    Google Scholar 

  4. Campbell A., Annu Rev Micriobiol 48, 193-222, 1994.

    Google Scholar 

  5. Bergh O., Borsheim Y., Bratbak G., and Heldal M., Nature 340, 467-468, 1989.

    Google Scholar 

  6. Anilionis A. and Riley M., J Bacteriol 143, 355-365, 1980.

    Google Scholar 

  7. Diaz R. and Pritchard R.H., Nature 275, 561-564, 1978.

    Google Scholar 

  8. Diaz R., Barnsley P., and Pritchard R.H., Mol Gen Genet 175, 151-157, 1979.

    Google Scholar 

  9. Taylor K. and Węgrzyn G., FEMS Microbiol Rev 17, 109-119, 1995.

    Google Scholar 

  10. Moore D.D., Denniston K.J., and Blattner F.R., Gene 14, 91-101, 1981.

    Google Scholar 

  11. Odegrip R., Shoen S., Haggard-Ljunngquist E., Park K., and Chattoraj D.K., J Virol 74, 4057-4063, 2000.

    Google Scholar 

  12. Smith T.F. and Waterman M.S., J Mol Biol 147, 195-197, 1981.

    Google Scholar 

  13. Thompson J.D., Higgins D.G., and Gibson T.J., Nucleic Acid Res 22, 4673-4680, 1994.

    Google Scholar 

  14. Strimmer K. and von Haeseler A., Mol Biol Evol 13, 964-969, 1996.

    Google Scholar 

  15. Potrykus K., Wróbel B., Węgrzyn A. and Węgrzyn G., Plasmid 44, 111-126, 2000.

    Google Scholar 

  16. Blattner F.R., Plunkett G. III, Bloch C.A., Perna N.T., Burland V., Riley M., Collado-Vides J., Glasner J.D., Rode C.K., Mayhew G.F., Gregor J., Davis N.W., Kirkpatrick H.A., Goeden M.A., Rose D.J., Mau B., and Shao Y., Science 277, 1453-1474, 1997.

    Google Scholar 

  17. Perna N.T., Plunkett G. III, Burland V., Mau B., Glasner J.D., Rose D.J., Mayhew G.F., Evans P.S., Gregor J., Kirkpatrick H.A., Posfai G., Hackett J., Klink S., Boutin A., Shao Y., Miller L., Grotbeck E.J., Davis N.W., Lim A., Dimalanta E., Potamousis K., Apodaca J., Anantharaman T.S., Lin J., Yen G., Schwartz D.C., Welch R.A., and Blattner F.R., Nature 409, 529-533, 2001.

    Google Scholar 

  18. Imai Y., Ogosawara N., Ishigo-oka D., Kadoya R., Daito T., and Moriya S., Mol Microbiol 36, 1037-1048, 2001.

    Google Scholar 

  19. Koonin E.V., Nucleic Acid Res 20, 1997, 1992.

    Google Scholar 

  20. Ludlam A.V., McNatt M.W., Carr K.M., and Kaguni J.M., J Biol Chem 276, 27345-27353

  21. Nakayama N., Bond M.W., Miyajima A., Kobori J., and Arai K., J Biol Chem 262, 10475-10480, 1987.

    Google Scholar 

  22. Dodd I.B. and Egan J.B., Nucleic Acids Res 18, 5019-5026, 1990.

    Google Scholar 

  23. Simpson A.J.G. et al., Nature 406, 151-157, 2000.

    Google Scholar 

  24. Backhaus H. and Petri J.B., Gene 32, 289-303, 1984.

    Google Scholar 

  25. Desiere F., Pridmore R.D., and Brussow H., Virology 275, 294-305, 2000.

    Google Scholar 

  26. Caspi R., Pacek M., Consiglieri G., Helinski D.R., Toukdarian A., and Konieczny I., EMBO J 20, 3262-3271, 2001.

    Google Scholar 

  27. Mallory J.B., Alfano C., and McMacken R., J Biol Chem 265, 13297-13307, 1990.

    Google Scholar 

  28. Konieczny I. and Marszalek J., J Biol Chem 270, 9792-9799, 1995.

    Google Scholar 

  29. Moran N.A., Munson M.A., Baumann P., and Ishikawa H., Proc R Soc Lond Biol Sci 253, 167-171.

  30. Figueroa-Bossi N.F., Coissac E., Netter P., and Bossi L., Mol Microbiol 25, 161-173, 1997.

    Google Scholar 

  31. Figueroa-Bossi N.F. and Bossi L., Mol Microbiol 28, 1040-1041, 1998.

    Google Scholar 

  32. Figueroa-Bossi N.F. and Bossi L., Mol Microbiol 33, 167-176, 1999.

    Google Scholar 

  33. Figueroa-Bossi N.F., Uzzau S., Maloriol D., and Bossi L., Mol Microbiol 39, 260-271, 2001.

    Google Scholar 

  34. Diaz R. and Kaiser K., Mol Gen Genet 183, 483-489, 1981.

    Google Scholar 

  35. Bakshi C.S., Singh V.P., Wood M.W., Jones P.W., Wallis T.S., and Galyov E.E., J Bacteriol 182, 2341-2344, 2000.

    Google Scholar 

  36. Parkhill J., Dougan G., James K.D., Thomson N.R., Pickard D., Wain J., Churcher C., Mungall K.L., Bentley S.D., Holden M.T.G., Sebaihia M., Baker S., Basham D., Brooks K., Chillingworth T., Connerton P., Cronin A., Davis P., Davies R.M., Dowd L., White N., Farrar J., Feltwell T., Hamlin N., Haque A., Hien T.T., Holroyd S., Jagels K., Krogh A., Larsen T.S., Leather S., Moule S., O'Gaora P., Parry C., Quail M., Rutherford K., Simmonds M., Skelton J., Stevens K., Whitehead S., and Barrell B.G., Nature 413, 848-852, 2001.

    Google Scholar 

  37. Miao E.A. and Miller S.I., Proc Natl Acad Sci USA 96, 9452-9454, 1999.

    Google Scholar 

  38. Pritchett L.C., Konkel M.E., Gay J.M., and Besser T.E., J Clin Microbiol 38, 3484-3488, 2000.

    Google Scholar 

  39. Węgrzyn A., Węgrzyn G., Herman A., and Taylor K., Genes Cells 1, 953-963, 1996.

    Google Scholar 

  40. Węgrzyn G. and Taylor K., J Mol Biol 226, 681-688, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wróbel, B., Węgrzyn, G. Evolution of Lambdoid Replication Modules. Virus Genes 24, 163–171 (2002). https://doi.org/10.1023/A:1014576701341

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014576701341

Navigation