Skip to main content
Log in

Thermodynamic Instabilities in One Dimension: Correlations, Scaling and Solitons

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Many thermodynamic instabilities in one dimension (e.g., DNA thermal denaturation, wetting of interfaces) can be described in terms of simple models involving harmonic coupling between nearest neighbors and an asymmetric on-site potential with a repulsive core, a stable minimum and a flat top. The paper deals with the case of the Morse on-site potential, which can be treated exactly in the continuum limit. Analytical expressions for correlation functions are derived; they are shown to obey scaling; numerical transfer-integral values obtained for a discrete version of the model exhibit the same critical behavior. Furthermore, it is shown in detail that the onset of the transition can be characterized by an entropic stabilization of an—otherwise unstable—nonlinear field configuration, a soliton-like domain wall (DW) with macroscopic energy content. The statistical mechanics of the DW provides an exact estimate of the critical temperature for a wide range of the discretization parameter; this suggests that the transition can be accurately viewed as being “driven” by a nonlinear entity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. A. Krumhansl and J. R. Schrieffer, Phys. Rev. B 11:3535 (1975).

    Google Scholar 

  2. M. Peyrard and A.R. Bishop, Phys. Rev. Lett. 62:2755 (1989).

    Google Scholar 

  3. M. Techera, L. L. Daemen, and E. W. Prohofsky, Phys. Rev. A 40:6636 (1989).

    Google Scholar 

  4. T. Dauxois, M. Peyrard, and A. R. Bishop, Phys. Rev. E 47:R4 (1993).

    Google Scholar 

  5. T. Dauxois and M. Peyrard, Phys. Rev. E 51:4027 (1995).

    Google Scholar 

  6. D. M. Kroll and R. Lipowski, Phys. Rev. B 28:5273 (1983); R. Lipowski, Phys. Rev. B 32:1731 (1985).

    Google Scholar 

  7. L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon Press, 1980).

  8. A very concise summary of exact results has been reported by N. Theodorakopoulos, T. Dauxois, and M. Peyrard, Phys. Rev. Lett. 85:6 (2000).

    Google Scholar 

  9. M. Kac, G. E. Uhlenbeck, and P. C. Hemmer, J. Math. Phys. 4:216 (1963).

    Google Scholar 

  10. Y.-L. Zhang, W.-M. Zheng, J.-X. Liu, and Y. Z. Chen, Phys. Rev. E 56:7100 (1997).

    Google Scholar 

  11. R. A. Guyer and M. D. Miller, Phys. Rev. A 17:1205 (1978).

    Google Scholar 

  12. P. M. Morse and E. C. G. Stueckelberg, Phys. Rev. 33:932 (1929).

    Google Scholar 

  13. M. Martin Nieto and L. M. Simmons, Jr, Phys. Rev. A 19:438 (1979).

    Google Scholar 

  14. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1965)

  15. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Series, and Products (Academic Press, 1994).

  16. F. Gursey, Proc. Cambridge Phil. Soc. 46:182 (1950).

    Google Scholar 

  17. L. van Hove, Physica 16:137 (1950).

    Google Scholar 

  18. D. Ruelle, Commun. Math. Phys. 9:267 (1968)

    Google Scholar 

  19. W. F. Buell and B. A. Shadwick, Am. J. Phys. 63:256–258 (1995)

    Google Scholar 

  20. P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, N.Y., 1953), Chap. 12.

    Google Scholar 

  21. M. Peyrard, T. Dauxois, and N. Theodorakopoulos (unpublished).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dauxois, T., Theodorakopoulos, N. & Peyrard, M. Thermodynamic Instabilities in One Dimension: Correlations, Scaling and Solitons. Journal of Statistical Physics 107, 869–891 (2002). https://doi.org/10.1023/A:1014546415934

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014546415934

Navigation