Skip to main content
Log in

Can A Cup Anemometer `Underspeed'?

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

An analysis of cup-anemometer dynamics has been carried out inorder to determine whether the mean-wind velocity can have anegative bias. This would be contrary to the general belief thatcup anemometers always overspeed. Compared to prior analyses, theeffect of a possible nonlinearity of the calibration function isincluded. The conclusion is that neither longitudinal nor lateralvelocity fluctuations can contribute significantly to a negativebias. However, if a cup anemometer has an angular response thatfalls below the ideal cosine response, there will, as demonstratedin the concluding discussion, be a negative contribution from thevertical velocity fluctuations to the total bias, and thiscontribution may even outbalance the positive contributions fromthe longitudinal velocity fluctuations. Concrete evidence of suchexotic cup anemometer behaviour has not been reported in theliterature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Busch, N. E. and Kristensen, L.: 1976, 'Cup Anemometer Overspeeding', J. Appl. Meteorol. 15, 1328-1332.

    Google Scholar 

  • Coppin, P. A.: 1982, 'Cup Anemometer Overspeeding', Meteorol. Rdsch. 35, 1-11.

    Google Scholar 

  • Kaganov, E. I. and Yaglom, A. M.: 1976, 'Errors in Wind Speed Measurements by Rotation Anemometers', Boundary-Layer Meteorol. 10, 1-11.

    Google Scholar 

  • Kaimal, J. C. and Wyngaard, J. C.: 1990, 'The Kansas andMinnesota Experiments', Boundary-Layer Meteorol. 50, 31-47.

    Google Scholar 

  • Kristensen, L.: 1993, The Cup Anemometer and Other Exciting Instruments, Technical Report R-615(EN), Risø National Laboratory, 82 pp.

  • Kristensen, L.: 1998, 'Cup Anemometer Behavior in Turbulent Environments', J. Atmos. Oceanic Tech. 15, 5-17.

    Google Scholar 

  • Kristensen, L.: 1999a, 'The Perennial Cup Anemometer', Wind Energy 2, 59-75.

    Google Scholar 

  • Kristensen, L.: 1999b, 'Kopanemometret', Vejret 78, 29-40 (in Danish).

    Google Scholar 

  • Kristensen, L.: 2000, 'Measuring Higher-Order Moments with a Cup Anemometer', J. Atmos. Oceanic Tech. 17, 1139-1148.

    Google Scholar 

  • Kristensen, L. and Lenschow, D. H.: 1988, 'The Effect of Nonlinear Dynamic Sensor Response on Measured Means', J. Atmos. Oceanic Tech. 5, 34-43.

    Google Scholar 

  • Kristensen, L., Jensen, G., Hansen, A., and Kirkegaard, P.: 2001, Field Calibration of Cup Anemometers, Technical Report R-1218(EN), Risø National Laboratory, 42 pp.

  • Panofsky, H. A. and Dutton, J. A.: 1984, Atmospheric Turbulence: Models and Methods for Engineering Applications, John Wiley & Sons, New York, 397 pp.

    Google Scholar 

  • Schrenk, O.: 1929, 'Ñber die Trägheitsfehler des Schalenkreuz-Anemometers bei schwankender Windstärke', Z. Tech. Phys. 10, 57-66.

    Google Scholar 

  • Wyngaard, J. C.: 1981, 'Cup, Propeller, Vane, and Sonic Anemometers in Turbulence Research', Annu. Rev. Fluid Mech. 13, 399-423.

    Google Scholar 

  • Wyngaard, J. C., Bauman, J. T., and Lynch, R. A.: 1974, 'Cup Anemometer Dynamics', in Proceedings of Flow, Its Measurements and Control in Science and Industry, Vol. 1, Pittsburgh, PA, pp. 701-708.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Kristensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kristensen, L. Can A Cup Anemometer `Underspeed'?. Boundary-Layer Meteorology 103, 163–172 (2002). https://doi.org/10.1023/A:1014543307696

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014543307696

Navigation