Macroscopic Fluctuation Theory for Stationary Non-Equilibrium States


We formulate a dynamical fluctuation theory for stationary non-equilibrium states (SNS) which is tested explicitly in stochastic models of interacting particles. In our theory a crucial role is played by the time reversed dynamics. Within this theory we derive the following results: the modification of the Onsager–Machlup theory in the SNS; a general Hamilton–Jacobi equation for the macroscopic entropy; a non-equilibrium, nonlinear fluctuation dissipation relation valid for a wide class of systems; an H theorem for the entropy. We discuss in detail two models of stochastic boundary driven lattice gases: the zero range and the simple exclusion processes. In the first model the invariant measure is explicitly known and we verify the predictions of the general theory. For the one dimensional simple exclusion process, as recently shown by Derrida, Lebowitz, and Speer, it is possible to express the macroscopic entropy in terms of the solution of a nonlinear ordinary differential equation; by using the Hamilton–Jacobi equation, we obtain a logically independent derivation of this result.

This is a preview of subscription content, access via your institution.


  1. 1.

    L. Landau and E. Lifshitz, Course of Theoretical Physics, Statistical Physics, Vol. 5 (Pergamon Press, New York, 1968).

    Google Scholar 

  2. 2.

    O. E. Lanford, Entropy and Equilibrium States is Classical Statistical Mechanics, A. Lenard, ed., Lecture Notes in Physics, Vol. 20 (Springer, Berlin, 1973).

    Google Scholar 

  3. 3.

    C. Kipnis, S. Olla, and S. R. S. Varadhan, Hydrodynamics and large deviations for simple exclusion processes, Comm. Pure Appl. Math. 42:115–137 (1989).

    Google Scholar 

  4. 4.

    L. Onsager and S. Machlup, Fluctuations and irreversible processes, Phys. Rev. 91: 1505–1512 (1953); Phys. Rev. 91:1512–1515 (1953).

    Google Scholar 

  5. 5.

    G. Jona-Lasinio, C. Landim, and M. E. Vares, Large deviations for a reaction diffusion model, Probab. Theory Related Fields 97:339–361 (1993).

    Google Scholar 

  6. 6.

    R. Graham and T. Te´l, Nonequilibrium potential for coexisting attractors, Phys. Rev. A 33:1322–1337 (1986) and references therein.

    Google Scholar 

  7. 7.

    G. Eyink, Dissipation and large thermodynamic fluctuations, J. Statist. Phys. 61:533–572 (1990).

    Google Scholar 

  8. 8.

    D. G. Luchinsky and P. V. E. McClintock, Irreversibility of classical fluctuations studied in analogue electrical circuits, Nature 389:463–466 (1997).

    Google Scholar 

  9. 9.

    J.-P. Eckmann, C.-A. Pillet, and L. Rey-Bellet, Non-equilibrium statistical mechanics of anharmonic chains coupled to two heath baths at different temperatures, Comm. Math. Phys. 201:657–697 (1999).

    Google Scholar 

  10. 10.

    W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II (Wiley, New York, 1966).

    Google Scholar 

  11. 11.

    M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems (Springer, New York, 1998).

    Google Scholar 

  12. 12.

    A. De Masi and P. Ferrari, A remark on the hydrodynamics of the zero-range processes, J. Statist. Phys. 36:81–87 (1984).

    Google Scholar 

  13. 13.

    G. Eyink, J. L. Lebowitz, and H. Spohn, Hydrodynamics of stationary nonequilibrium states for some lattice gas models, Comm. Math. Phys. 132:253–283 (1990). Lattice gas models in contact with stochastic reservoirs: Local equilibrium and relaxation to the steady state, Comm. Math. Phys. 140:119–131 (1991).

    Google Scholar 

  14. 14.

    B. Derrida, J. L. Lebowitz, and E. R. Speer, Exact large deviation functional for the density profile in a stationary nonequilibrium open system, cond-mat/0105110 (2001).

  15. 15.

    L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C. Landim, Fluctuations in stationary non-equilibrium states of irreversible processes, Phys. Rev. Lett. 87:040601 (2001).

    Google Scholar 

  16. 16.

    L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C. Landim, in preparation.

  17. 17.

    D. Gabrielli, G. Jona-Lasinio, and C. Landim, Onsager reciprocity relations without microscopic reversibility, Phys. Rev. Lett. 77:1202–1205 (1996).

    Google Scholar 

  18. 18.

    D. Gabrielli, G. Jona-Lasinio, and C. Landim, Onsager symmetry from microscopic TP invariance, J. Statist. Phys. 96:639–652 (1999).

    Google Scholar 

  19. 19.

    D. Gabrielli, G. Jona-Lasinio, C. Landim, and M. E. Vares, Microscopic reversibility and thermodynamic fluctuations, in Boltzmann's Legacy 150 Years After His Birth, C. Cercignani, G. Jona-Lasinio, G. Parisi, and L. A. Radicati di Brozolo, eds., Atti dei Convegni Lincei, Vol. 131, pp. 79–88 (Accad. Naz. Lincei, Rome, 1997).

    Google Scholar 

  20. 20.

    H. Spohn, Large Scale Dynamics of Interacting Particles (Springer, Berlin, 1991).

    Google Scholar 

  21. 21.

    M. D. Donsker and S. R. S. Varadhan, Large deviations from a hydrodynamic scaling limit, Comm. Pure Appl. Math. 42:243–270 (1989).

    Google Scholar 

  22. 22.

    J. Quastel, Large deviations from a hydrodynamic scaling limit for a nongradient system, Ann. Probab. 23:724–742 (1995).

    Google Scholar 

  23. 23.

    G. Morpurgo, B. F. Touschek, and L. A. Radicati, On time reversal, Nuovo Cimento 12:677–698 (1954).

    Google Scholar 

  24. 24.

    C. Kipnis and C. Landim, Scaling Limits of Interacting Particle Systems (Springer, Berlin, 1999).

    Google Scholar 

  25. 25.

    A. De Masi, P. Ferrari, N. Ianiro, and E. Presutti, Small deviations from local equilibrium for a process which exhibits hydrodynamical behavior. II, J. Statist. Phys. 29:81–93 (1982).

    Google Scholar 

  26. 26.

    H. Spohn, Long range correlations for stochastic lattice gases in a nonequilibrium steady state, J. Phys. A 16:4275–4291 (1983).

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bertini, L., De Sole, A., Gabrielli, D. et al. Macroscopic Fluctuation Theory for Stationary Non-Equilibrium States. Journal of Statistical Physics 107, 635–675 (2002).

Download citation

  • stationary non-equilibrium states
  • large deviations
  • boundary driven lattice gases