Skip to main content

On the general form of the Benjamin-Bona-Mahony equation in fluid mechanics

Abstract

In the study of many problems of mechanical and physical sciences, various versions of the Benjamin-Bona-Mahony (BBM) equation or the regularized-long-wave equation have been proposed. In this paper, we obtain the solitary-wave solutions to the general form of the BBM equation, which fully cover the variety of the BBM solitary waves previously reported.

This is a preview of subscription content, access via your institution.

References

  1. T. Benjamin, J. Bona, and J. Mahony: Philos. Trans. R. Soc. London Ser. A272 (1972) 47.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. D. Peregrine: J. Fluid Mech.25 (1964) 321.

    Article  ADS  Google Scholar 

  3. J. Meiss and W. Horton: Phys. Fluids25 (1982) 1838.

    Article  MATH  ADS  Google Scholar 

  4. C. Yan: J. Math. Phys.24 (1993) 2618.

    Article  ADS  Google Scholar 

  5. M. Musette, F. Lambert, and J. Decuyper: J. Phys. A20 (1987) 6223.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. C. Easwaran and S. Majumbar: J. Math. Phys.29 (1988) 390.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. W. Zhang: J. Lanzhou Univ. (Natural Sci.)29 (1993) 14 (in Chinese).

    MATH  Google Scholar 

  8. R. Camassa and D. Holm: Phys. Rev. Lett.71 (1993) 1661.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. P. Olver: Math. Proc. Camb. Phil. Soc.85 (1979) 143.

    Article  MATH  MathSciNet  Google Scholar 

  10. D. Rollins: J. Math. Phys.32 (1991) 3331.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. J. Bona, W. Pritchard, and L. Scott: Phys. Fluids23 (1980) 438.

    Article  MATH  ADS  Google Scholar 

  12. Y. Kodama: Phys. Lett. A123 (1987) 276.

    Article  ADS  MathSciNet  Google Scholar 

  13. W. Hereman, P. Banerjee, A. Korpel, G. Assanto, A. Van Immerzeele, and A. Meerpoel: J. Phys. A19 (1986) 607.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. B. Tian and Y.T. Gao: Euro. Phys. J. B22 (2001) 351.

    Article  ADS  Google Scholar 

  15. Y.T. Gao and B. Tian: Int. J. Mod. Phys. C12 (2001) 1383.

    Article  ADS  Google Scholar 

  16. Y.T. Gao, B. Tian, and G.M. Wei: Int. J. Mod. Phys. C12 (2001) 1425.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work has been supported by the China Talent Fund, by the Cheung Kong Scholars Programme of China, by the Cheung-Kong-Scholar Research Concerted Fund of Beijing University of Aeronautics and Astronautics, and by the Doctoral Education Fund in Basic Sciences of Beijing University of Aeronautics and Astronautics.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, H., Wei, GM. & Gao, YT. On the general form of the Benjamin-Bona-Mahony equation in fluid mechanics. Czech J Phys 52, 373–377 (2002). https://doi.org/10.1023/A:1014512319030

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014512319030

PACS

  • 05.45.Yv
  • 47.35.+i
  • 52.35.Sb

Key words

  • general form of the Benjamin-Bona-Mahony equation
  • solitary-wave solutions
  • fluid mechanics