Skip to main content
Log in

MCP-1 Expression in CNS-1 Astrocytoma Cells: Implications for Macrophage Infiltration into Tumors In vivo

  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Gliomas are among the most resistant tumors to conventional anti-tumor therapy, and are typified by their highly infiltrative nature and ill-defined borders. Macrophages constitute a major proportion of the tumor cell mass in both primary human gliomas and as shown here, a CNS-1 glioma model. The objective of this study was to identify tumor-cell-derived chemotactic factor(s) which participate in macrophage recruitment into tumors in vivo. This study demonstrates the constitutive expression of monocyte chemoattractant protein-1 (MCP-1), a potent monocyte chemoattractant, by the rat astrocytoma cell line CNS-1. Characterization of cytokine expression by CNS-1 cells in vitro revealed the constitutive expression of TGF-β but not other proinflammatory cytokines. However, numerous cytokines were detected in CNS-1 tumors in vivo including Ltβ, IL-1α, IL-1β, TNF-α, TNF-β, IL-10, and IFN-γ. Attenuation of MCP-1 release from CNS-1 cells using an anti-sense approach revealed no significant alterations in macrophage infiltration into tumors in vivo, suggesting redundancy in the signal(s) involved in macrophage recruitment. Depletion of peripheral macrophages using liposome-encapsulated clodronate revealed no significant differences in tumor growth or in the degree of macrophage infiltration into CNS-1 tumors in vivo. These results indicate that CNS-1 cells produce chemotactic factors which likely participate in macrophage recruitment into tumors in vivo. Whether or not macrophage recruitment confers a growth advantage for the tumor remains to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Von Hanwehr RI, Hoffman FM, Taylor CR, Apuzzo MLJ: Mononuclear lymphoid populations infiltrating the microenvironment of the primary CNS tumors. Characterization of cell subsets with monoclonal antibodies. J Neurosurg 60: 1138-1147, 1984

    Google Scholar 

  2. Paine JT, Handa H, Yamasaki T, Yamashita J, Miyatake S: Immunohistochemical analysis of infiltrating lymphocytes in central nervous system tumors. Neurosurgery 18: 776-782, 1986

    Google Scholar 

  3. Shinonaga M, Cheng Chang C, Suzuki N, Sato M, Kuwabara T: Immunohistological evaluation of macrophage infiltrates in brain tumors. J Neurosurg 68: 259-265, 1988

    Google Scholar 

  4. Giometto B, Bozza F, Faresin F, Alessio L, Mingrino S, Tavolato B: Immune infiltrate and cytokines in gliomas. Acta Neurochir 138: 50-56, 1996

    Google Scholar 

  5. Leung SY, Wong MP, Chung LP, Chan AS, Yuen ST: Monocyte chemoattractant protein-1 expression and macrophage infiltration in gliomas. Acta Neuropathol 93: 518-527, 1997

    Google Scholar 

  6. Koch AE, Polverini PJ, Kunkel SL, Harlow LA, DiPietro LA, Elner VM, Elner SG, Strieter RM: Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258: 1798-1801, 1992

    Google Scholar 

  7. Koch AE, Cho M, Burrows JC, Polverini PJ, Leibovich SJ: Inhibition of production of monocyte/macrophage-derived angiogenic activity by oxygen free-radical scavengers. Cell Biol Int Rep 16: 415-425, 1992

    Google Scholar 

  8. Ono M, Torisu H, Fukushi J, Nishie A, Kuwano M: Biological implications of macrophage infiltration in human tumor angiogenesis. Cancer Chemother Pharmacol 43: S69-S71, 1999

    Google Scholar 

  9. Leek RD, Hunt NC, Landers RJ, Lewis CE, Royds JA, Harris AL: Macrophage infiltration is associated withVEGF and EGFR expression in breast cancer. J Pathol 190: 430-436, 2000

    Google Scholar 

  10. Pace JL, Russell SW, Torres BA, Johnson HM, Gray PW: Recombinant mouse gamma interferon induces the priming step in macrophage activation for tumor cell killing. J Immunol 130: 2011-2013, 1983

    Google Scholar 

  11. Sunderkotter C, Goebeler M, Schulze-Osthoff K, Bhardwaj R, Sorg C: Macrophage-derived angiogenesis factors. Pharac Ther 51: 195-216, 1991

    Google Scholar 

  12. Sunderkotter C, Steinbrink K, Goebeler M, Bhardwaj R, Sorg C: Macrophages and angiogenesis. J Leukoc Biol 55: 410-422, 1994

    Google Scholar 

  13. Lewis CE, Leek R, Harris A, McGee JO: Cytokine regulation of angiogenesis in breast cancer: the role of tumorassociated macrophages. J Leukoc Biol 57: 747-751, 1995

    Google Scholar 

  14. Hildenbrand R, Dilger I, Horlin A, Stutte HJ: Urokinase and macrophages in tumor angiogenesis. Brit J Cancer 72: 818-823, 1995

    Google Scholar 

  15. Kruse CA, Molleston MC, Parks EP, Schiltz PM, Kleinschmidt-DeMasters BK, Hickey WF: A rat glioma model, CNS-1, with invasive characteristics similar to those of human gliomas: a comparison to 9L gliosarcoma. J Neuro-Oncol 22: 191-200, 1994

    Google Scholar 

  16. Negas RP, Stamp GW, Relf MG, Burke F, Malik ST, Bernasconi S, Allavena P, Sozzani S, Mantovani A, Balkwill FR: The detection and localization of monocyte chemoattractant protein-1 (MCP-1) in human ovarian cancer. J Clin Invest 95: 2391-2396, 1995

    Google Scholar 

  17. Mazzucchelli L, Loetscher P, Kappeler A, Uguccioni M, Baggiolini M, Laissue JA, Mueller C: Monocyte chemoattractant protein-1 gene expression in prostatic hyperplasia and prostate adenocarcinoma. Am J Pathol 149: 501-509, 1996

    Google Scholar 

  18. Negus RP, Stamp GW, Hadley J, Balkwill FR: Quantitative assessment of the leukocyte infiltrate in ovarian cancer and its relationship to the expression of C-C chemokines. Am J Pathol 150: 1723-1734, 1997

    Google Scholar 

  19. Wang JM, Deng X, Gong W, Su S: Chemokines and their role in tumor growth and metastasis. J Immunol Meth 220: 1-17, 1998

    Google Scholar 

  20. Ben-Baruch A, Michiel DF, Oppenheim JJ: Signals and receptors involved in recruitment of inflammatory cells. J Biol Chem 270: 11703-11706, 1995

    Google Scholar 

  21. Luster AD: Chemokines-chemotactic cytokines that mediate inflammation. New Eng J Med 338: 436-445, 1998

    Google Scholar 

  22. Rollins BJ: Chemokines. Blood 90: 909-928, 1997

    Google Scholar 

  23. Giulian D, Baker TJ: Characterization of ameboid microglia isolated from developing mammalian brain. J Neurosci 6: 2163-2178, 1986

    Google Scholar 

  24. Hickey WF, Gonatas NK, Kimura H, Wilson DB: Identification and quantitation of T-lymphocyte subsets found in the spinal cord of Lewis rats with acute EAE. J Immunol 131: 2805-2809, 1983

    Google Scholar 

  25. Van Rooijen N, Kors N, Ende N, Dijkstra CD: Depletion and repopulation of macrophages in spleen and liver of rat after intravenous treatment with liposome-encapsulated dichloromethylene diphosphonate. Cell Tissue Res 260: 215-222, 1990

    Google Scholar 

  26. DiPietro LA, Polverini PJ: Angiogenic macrophages produce the angiogenic inhibitor thrombospondin 1. Am J Pathol 143: 678-684, 1993

    Google Scholar 

  27. Dijkstra CD, Dopp EA, Joling P, Kraal G: The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3. Immunology 54: 589-599, 1985

    Google Scholar 

  28. Postlethwaite AE, Seyer JM: Identification of a chemotactic epitope in human transforming growth factor-beta 1 spanning amino acid residues 368-374. J Cell Physiol 164: 587-592, 1995

    Google Scholar 

  29. Koyama S, Sato E, Masubuchi T, Takamizawa A, Nomura H, Kubo K, Nagai S, Izumi T: Human lung fibroblasts release chemokinetic activity for monocytes constitutively. Am J Physiol 275: L223-L230, 1998

    Google Scholar 

  30. Van Rooijen N, Sanders A: Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes, and applications. J Immunol Meth 174: 83-93, 1994

    Google Scholar 

  31. Mander TH, Morris JF: Immunophenotypic evidence for distinct populations of microglia in the rat hypothalamoneurohypophysial system. Cell Tissue Res 280: 665-673, 1995

    Google Scholar 

  32. Nishie A, Ono M, Shono T, Fukushi J, Otsubo M, Onoue H, Ito Y, Inamura T, Ikezaki K, Fukui M, Iwaki T, Kuwano M: Macrophage infiltration and hemeoxygenase-1 expression correlate with angiogenesis in human gliomas. Clin Cancer Res 5: 1107-1113, 1999

    Google Scholar 

  33. Pace JL, Russell SW: Activation of mouse macrophages for tumor cell killing: I. Quantitative analysis of interactions between lymphokine and lipopolysaccharide. J Immunol 126: 1863-1867, 1981

    Google Scholar 

  34. Knighton DR, Hunt TK, Scheuenstuhl H, Halliday BJ, Werb Z, Banda MJ: Oxygen tension regulates the expression of angiogenesis factor by macrophages. Science 221: 1283-1285, 1983

    Google Scholar 

  35. Hayashi M, Luo Y, Laning J, Strieter RM, Dorf ME: Production and function of monocyte chemoattractant protein-1 and other ß-chemokines in murine glial cells. J Neuroimmunol 60: 143-150, 1995

    Google Scholar 

  36. Guo H, Jin Y-X, Ishikawa M, Huang Y-M, Van Der Meide PH, Link H, Xiao B-G: Regulation of ß-chemokine mRNA expression in adult rat astrocytes by lipopolysaccharide, proinflammatory and immunoregulatory cytokines. Scand J Immunol 48: 502-508, 1998

    Google Scholar 

  37. Van Meir E, Sawamura Y, Diserens AC, Hamou MF, de Tribolet N: Human glioblastoma cells release interleukin 6 in vivo and in vitro. Cancer Res 50: 6683-6688, 1990

    Google Scholar 

  38. Stephanou A, Knight RA, Annicchiarico-Petruzzelli M, Finazzi-Agro A, Lightmann SL, Melino G: Interleukin-1 beta and interleukin-6 mRNA are expressed in human glioblastoma and neuroblastoma cells respectively. Funct Neurol 7: 129-133, 1992

    Google Scholar 

  39. Lichtor T, Libermann TA: Coexpression of interleukin-1 beta and interleukin-6 in human brain tumors. Neurosurgery 34: 669-672, 1994

    Google Scholar 

  40. Sasaki A, Tamura M, Hasegawa M, Ishiuchi S, Hirato J, Nakazato Y: Expression of interleukin-1 beta mRNA and protein in human gliomas assessed byRT-PCR and immunohistochemistry. J Neuropathol Exp Neurol 57: 653-663, 1998

    Google Scholar 

  41. Matsunaga J, Sinha D, Pannell L, Santis C, Solano F, Wistow GJ, Hearing VJ: Enzyme activity of macrophage migration inhibitory factor toward oxidized catecholamines. J Biol Chem 274: 3268-3271, 1999

    Google Scholar 

  42. Nishibori M, Nakaya N, Mori S, Saeki K: Immunohistochemical localization of macrophage migration inhibitory factor (MIF) in tanycytes, subcommissural organ and choroid plexus in the rat brain. Brain Res 758: 259-262, 1997

    Google Scholar 

  43. Oswald IP, Gazzinelli RT, Sher A, James SL: IL-10 synergizes with IL-4 and transforming growth factor-beta to inhibit macrophage cytotoxic activity. J Immunol 148: 3578-3582, 1992

    Google Scholar 

  44. Alleva DG, Walker TM, Elgert KD: Induction of macrophage suppressor activity by fibrosarcoma-derived transforming growth factor-beta 1: contrasting effects on resting and activated macrophages. J Leukoc Biol 57: 919-928, 1995

    Google Scholar 

  45. Gollnick SO, Cheng HL, Grande CC, Thompson D, Tomasi TB: Effects of transforming growth factor-beta on bone marrow macrophage Ia expression induced by cytokines. J Interferon Cytokine Res 15: 485-491, 1995

    Google Scholar 

  46. Erwig LP, Kluth DC, Walsh GM, Rees AJ: Initial cytokine exposure determines function of macrophages and renders them unresponsive to other cytokines. J Immunol 161: 1983-1988, 1998

    Google Scholar 

  47. Tsunawaki S, Sporn M, Ding A, Nathan C: Deactivation of macrophages by transforming growth factor-beta. Nature 334: 260-262, 1988

    Google Scholar 

  48. Maxwell M, Galaopoulos T, Neville-Golden J, Antoniades HN: Effect of the expression of transforming growth factor-beta 2 in primary human glioblastomas on immunosuppression and loss of immune surveillance. J Neurosurg 76: 799-804, 1992

    Google Scholar 

  49. Stiles JD, Ostrow PT, Balos LL, Greenberg SJ, Plunkett R, Grand W, Heffner RR: Correlation of endothelin-1 and transforming growth factor beta 1 with malignancy and vascularity in human gliomas. J Neuropathol Exp Neurol 56: 435-439, 1997

    Google Scholar 

  50. Jennings MT, Pietenpol JA: The role of transforming growth factor beta in glioma. J Neuro-Oncol 36: 123-140, 1998

    Google Scholar 

  51. Kjellman C, Olofsson SP, Hansson O, Von Schantz T, Lindvall M, Nilsson I, Salford LG, Sjogren HO, Widegreen B: Expression of TGF-beta isoforms, TGF-beta receptors, andSMADmolecules at different stages of human glioma. Int J Cancer 89: 251-258, 2000

    Google Scholar 

  52. Weiss JM, Berman JW: Astrocyte expression of monocyte chemoattractant protein-1 is differentially regulated by transforming growth factor beta. J Neuroimmunol 91: 190-197, 1998

    Google Scholar 

  53. Rollins BJ, Yoshimura T, Leonard EJ, Pober JS: Cytokineactivated human endothelial cells synthesize and secrete a monocyte chemoattractant, MCP-1/JE. Am J Pathol 136: 1229-1233, 1990

    Google Scholar 

  54. Rollins BJ, Pober JS: Interleukin-4 induces the synthesis and secretion of MCP-1/JE by human endothelial cells. Am J Pathol 138: 1315-1319, 1991

    Google Scholar 

  55. Rollins BJ, Walz A, Baggiolini M: Recombinant human MCP-1/JE induces chemotaxis, calcium flux, and the respiratory burst in human monocytes. Blood 78: 1112-1116, 1991

    Google Scholar 

  56. Taubman MB, Rollins BJ, Poon M, Marmur J, Green RS, Berk BC, Nadal-Ginard B: JE mRNA accumulates rapidly 12 in aortisc injury and in platelet-derived growth factorstimulated vascular smooth muscle cells. Circ Res 70: 314-325, 1992

    Google Scholar 

  57. Gu L, Tseng SC, Rollins BJ: Monocyte chemoattractant protein-1. Chem Immunol 72: 7-29, 1999

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kielian, T., van Rooijen, N. & Hickey, W.F. MCP-1 Expression in CNS-1 Astrocytoma Cells: Implications for Macrophage Infiltration into Tumors In vivo . J Neurooncol 56, 1–12 (2002). https://doi.org/10.1023/A:1014495613455

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014495613455

Navigation