Skip to main content
Log in

Including Measured Genotypes in Statistical Models to Study the Interplay of Multiple Factors Affecting Complex Traits

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

The etiology of complex traits may perhaps best be conceptualized by an interplay of multiple factors that mediate the influence of the genes on the eventual outcome. The possibilities of studying aspects of this interplay using existing methods are generally limited. We therefore propose a model with observed and latent variables that does not impose restrictions on the number of variables or the direction of their causal relations and provides a general approach for fitting structural equation models to empirical data. The model is very flexible and (1) allows for genetic effects on the means, variances, and relations between variables, (2) can control for stratification effects on all these components, (3) can be fitted in nuclear families of any size, (4) is estimated using an interpretable parameterization, and (5) can incorporate di- and multi-allelic loci, marker haplotypes, multiple loci simultaneously, and parental genotypes. We indicate how the model can be estimated with the Mx software (Neale et al., 1999) and have written a program to enable geneticists who are not acquainted with Mx to fit their own submodels in a simple and efficient way. A simulation study showed that the model yielded correct Type I errors, unbiased parameter estimates, and satisfactory power to discriminate between alternative models. An example is also given that illustrates how the model could be applied to real data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCE

  • Abecasis, G., Cardon, L., and Cookson, W. (2000). A general test of association for quantitative traits in nuclear families. Am. J. Hum. Genet. 66:279–292.

    Google Scholar 

  • Akaike, H. (1987). Factor analysis and AIC. Psychometrika 52:317–332.

    Google Scholar 

  • Allison, D. (1997). Transmission-disequilibrium tests for quantitative traits. Am. J. Hum. Genet. 60:676–690.

    Google Scholar 

  • Allison, D., Heo, M., Kaplan, N., and Martin, E. (1999). Siblingbased tests of linkage and association for quantitative traits. Am. J. Hum. Genet. 64:1754–1763.

    Google Scholar 

  • Allison, D., Neale, M., Zannolli, R., Schork, N., Amos, C., and Blangero, J. (1999). Testing the robustness of the likelihoodratio test in a variance-component quantitative-trait locimapping procedure. Am. J. Hum. Genet. 65:531–544.

    Google Scholar 

  • Boerwinkle, E., Chakraborty, R., and Sing, S. (1986). The use of measured genotype information in the analysis of quantitative phenotypes in man. I. Models and analytical methods. Ann. Hum. Genet. 50:181–194.

    Google Scholar 

  • Bollen, K. A. (1989). Structural Equations with Latent Variables, Wiley, New York.

  • Box, G. E. P., and Cox, D. R. (1964). Analysis of transformations. J. Roy. Stat. Soc.: Series B26:211–243.

    Google Scholar 

  • Browne, M. (1984). Asymptotically distribution free methods for the analysis of covariance structures. Br. J. Math. Stat. Psychol. 37: 62–83.

    Google Scholar 

  • Curtis, D., and Sham, P. C. (1995). A note on the application of the transmission disequilibrium test when a parent is missing. Am. J. Hum. Genet. 56:811–812.

    Google Scholar 

  • Devlin, B., and Roeder, K. (1999). Genomic control for association studies. Biomet. 55:997–1004.

    Google Scholar 

  • Diggle, P., and Kenward, M. (1994). Informative drop-out in longitudinal data analysis. J. Roy. Stat. Soc., Series C 43:49–93.

    Google Scholar 

  • Dolan, C. V., and Van der Maas, H. L. J. (1998). Fitting multivariate normal finite mixtures subject to structural equation modeling. Psychometrika 63:227–253.

    Google Scholar 

  • Draper, N., and Smith, H. (1966). Applied Regression Analysis, Wiley, New York.

  • Efron, B., and Tibshirani, R. (1993). An Introduction to the Bootstrap, Chapman and Hall, New York.

    Google Scholar 

  • Falconer, D. (1989). Introduction to Quantitative Genetics, Longman, Essex.

    Google Scholar 

  • Foppa, I., and Spiegelman, D. (1997). Power and sample size calculations for case-control studies of gene-environment interactions with a polytomous exposure variable. Am. J. Epidem. 146: 596–604.

    Google Scholar 

  • Fulker, D. W., Cherny, S. S., Sham, P. C., and Hewitt, J. K. (1999). Combined linkage and association sib-pair analysis for quantitative traits. Am. J. Hum. Genet. 64:259–267.

    Google Scholar 

  • Gimelfarb, A. (1994). Additive-multiplicative approximation of genotype-environment interaction. Genet. 138:1339–1349.

    Google Scholar 

  • Green, J. R., and Shah, S. (1993). Power comparison of various sibship tests of association. Ann. Hum. Genet. 57:151–158.

    Google Scholar 

  • Hill, I. D., Hill, R., and Holder, R. L. (1976). Fitting Johnson curves by moments. Appl. Stat. 25:171–182.

    Google Scholar 

  • Johnson, N. L. (1949). Systems of frequency curves generated by methods of translation. Biometrika, 36:149–176.

    Google Scholar 

  • Jöreskog, K. G. (1973). A general method for estimating a linear structural equation system. In Goldberger, A. S., and Duncan, O. D. (eds.), Structural Equation Models in the Social Sciences, Seminar Press, New York, pp. 85–112.

    Google Scholar 

  • Jöreskog, K., and Sörbom, D. (1993). LISREL 8 User's Reference Guide, Scientific Software International, Chicago.

  • Kaplan, D. (1989). The problem of error rate inflation in covariance structure models. Educ. Psychol. Measurement 49:333–337.

    Google Scholar 

  • Kendler, K. S., Neale, M. C., Kessler, R. C., Heath, A. C., and Eaves, L. J. (1993). A twin study of recent life events and difficulties. Arch. Gen. Psychiat. 50:789–796.

    Google Scholar 

  • Khoury, M. J. (1998). Genetic and epidemiologic approaches to the search for gene-environment interaction: The case of osteoporosis. Am. J. Epidem. 147:1–2.

    Google Scholar 

  • Khoury, M. J., Adams, M. J., and Flanders, W. D. (1988). An epidemiologic approach to ecogenetics. Am. J. Hum. Genet. 42:89–95.

    Google Scholar 

  • Khoury, M. J., and Flander, W. D. (1996). Nontraditional epidemiologic approaches in the analysis of gene-environment interaction: Case-control studies with no controls. Am. J. Epidem. 144:207–213.

    Google Scholar 

  • Lange, K., Westlake, J., and Spence, M. A. (1976). Extensions to pedigree analysis: III. Variance components by the scoring method. Ann. Hum. Genet. 39:485–491.

    Google Scholar 

  • Lord, F. M., and Novick, M. R. (1968). Statistical Theories of Mental Test Scores, Addington-Wesley, Reading, MA.

  • Martin, N. (2000). Gene-environment interaction and twin studies. In Spector, T. D., Snieder, H., and MacGregor, A. J. (eds.), Advances in Twin and Sib-pair Analysis, Greenwich Medical Media, London, pp. 144–150.

    Google Scholar 

  • McGue, M., and Lykken, D. T. (1992). Genetic influence on risk of divorce. Psychol. Science 3:368–373.

    Google Scholar 

  • Muthén, B. O., and Kaplan, D. (1985). A comparison of some methodologies for the factor analysis of non-normal Likert variables. Br. J. Math. Stat. Psychol. 38:171–189.

    Google Scholar 

  • Muthén, L. K., and Muthén, B. O. (1998). Mplus: User's Guide, Muthén and Muthén, Los Angeles.

    Google Scholar 

  • Neale, M. C., Boker, S. M., Xie, G., and Maes, H. H. (1999). Mx: Statistical Modeling, Department of Psychiatry, Virginia Commonwealth University, Richmond.

    Google Scholar 

  • Phillips, K., and Matheny, A. P. (1995). Quantitative genetic analysis of injury liability in infants and toddlers. Am. J. Med. Genet. 60:64–71.

    Google Scholar 

  • Piegorsch, W. W., Weinberg, C. R., and Taylor, J. A. (1994). Nonhierarchical logistic models and case-only designs for assessing susceptibility in population-based case-control studies. Stat. Med. 13:153–162.

    Google Scholar 

  • Plomin, R., and Rutter, M. (1998). Child development, molecular genetics, and what to do with genes once they are found. Child Develop. 69:1223–1242.

    Google Scholar 

  • Pritchard, J. K., and Rosenberg, N. A. (1999). Use of unlinked genetic markers to detect population stratification in association studies. Am. J. Hum. Genet. 65:220–228.

    Google Scholar 

  • Rabinowitz, D. (1997). Transmission-disequilibrium test for quantitative trait loci. Hum. Hered. 47:342–350.

    Google Scholar 

  • Ratkowsky, D. A., and Reedy, T. J. (1986). Choosing near-linear parameters in the four-parameter logistic model for radioligand and related assays. Biometrics 42:575–582.

    Google Scholar 

  • Ratkowsky, D. A. (1990). Handbook of Nonlinear Regression Models, Dekker, New York.

    Google Scholar 

  • Rubinstein, P., Walker, M., Carpenter, C., Carrier, C., Krassner, J., Falk, C., and Ginsberg, F. (1981). Genetics of HLA disease associations: The use of the haplotype relative risk (HRR) and the “haplo-delta” (DH) estimates in juvenile diabetes from three racial groups. Hum. Immunol. 3:384.

    Google Scholar 

  • Falk, C., and Ginsberg, F. (1981). Genetics of HLA disease associations: The use of the haplotype relative risk (HRR) and the “haplo-delta” (DH) estimates in juvenile diabetes from three racial groups. Hum. Immunol. 3:384. Schaid, D. J. (1995). Relative-risk regression models using cases and their parents. Genetic Epidem. 12:813–818.

    Google Scholar 

  • Schaid, D. J. (1999). Case-parents design for gene-environment interaction. Genetic Epidem. 16:261–273.

    Google Scholar 

  • Schaid, D. J., and Li, H. (1997). Genotype relative-risks and association tests for nuclear families with missing parental data. Genet. Epidemiol. 14:1113–1118.

    Google Scholar 

  • Schork, N., Cardon, L., and Xu, X. (1998). The future of genetic epidemiology. Trends Genet. 14:266–272.

    Google Scholar 

  • Schwartz, G. (1978). Estimating the dimension of a model. Ann. Stat. 6:461–464.

    Google Scholar 

  • Sham, P. (1998). Statistics in Human Genetics, Arnold, London.

  • Sing, C., Haviland, M., Templeton, A., Zerba, K., and Reilly, S. (1992). Biological complexity and strategies for finding DNA variations responsible for inter-individual variation in risk of common chronic disease, coronary artery disease. Ann. Med. 24:539–547.

    Google Scholar 

  • Snieder, H., Boomsma, D. I., and van Doornen, L. J. P. (1997). Agedependency of gene expression in plasma lipid, lipoprotein and apolipoprotein levels. Am. J. Hum. Genet. 60:638–650.

    Google Scholar 

  • Snieder, H., Boomsma, D. I., and van Doornen, L. J. P. (1999). Dissecting the genetic architecture of lipids, lipoproteins and apolipoproteins. Lessons from twin studies. Arterioscl. Thromb. and Vasc. Biol. 19:2826–2834.

    Google Scholar 

  • Spielman, R. S., McGinnis, R. E., and Ewens, W. J. (1993). Transmission test for linkage disequilibrium: The insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am. J. Hum. Genet. 52:506–516.

    Google Scholar 

  • StataCorp. (1999). Stata Statistical Software: Release 6.0,Stata Corporation, College Station, TX.

    Google Scholar 

  • Thomson, G. (1995). Mapping disease genes: Family-based association studies. Am. J. Hum. Genet. 57:487–498.

    Google Scholar 

  • True, W. R., Heath, A. C., Bucholz, K., Slutske, W., Romeis, J. C., Scherrer, J. F., Lin, N., Eisen, S. A., Goldberg, J., Lyons, M. J., and Tsuang, M. T. (1996). Models of treatment seeking for alcoholism: The role of genes and environment. Alc. Clin. Exp. Res. 20:1577–1581.

    Google Scholar 

  • Van den Oord, E. J. C. G. (1999a). A comparison between different designs and tests to detect QTLs in association studies. Behav. Genet. 29:245–256.

    Google Scholar 

  • Van den Oord, E. J. C. G. (1999b). Method to detect genotypeenvironment interactions for quantitative trait loci in association studies. Am. J. Epidem. 150:1179–1187.

    Google Scholar 

  • Van den Oord, E. J. C. G. (2000). The use of mixture models to perform quantitative tests for linkage disequilibrium, maternal effects, and parent-of-origin effects with incomplete subject-parent triads. Behav. Genet. 30:335–343.

    Google Scholar 

  • Van den Oord, E. J. C. G., and Van der Ark, L. A. (1997). A note on the use of the tobit approach for test scores with floor or ceiling effects. Br. J. Math. Stat. Psychol. 50:351–364.

    Google Scholar 

  • Weinberg, C. R. (1999). Allowing for missing parents in genetic studies of case-parent triads. Am. J. Hum. Genet. 64:1186–1193.

    Google Scholar 

  • Wolf, C. R., and Smith, G. (2000). Implications of pharmacogenetic polymorphisms for human health. Spector, T. D., Snieder, H., and MacGregor, A. J. (eds.), Advances in Twin and Sib-Pair Analysis, Greenwich Medical Media, London, pp. 245–258.

    Google Scholar 

  • Xiong, M., Krushkal, J., and Boerwinkle, E. (1998). TDT statistics for mapping quantitative trait loci. Ann. Hum. Genet. 62:431–452.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin J. C. G. van den Oord.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van den Oord, E.J.C.G., Snieder, H. Including Measured Genotypes in Statistical Models to Study the Interplay of Multiple Factors Affecting Complex Traits. Behav Genet 32, 1–22 (2002). https://doi.org/10.1023/A:1014474711118

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014474711118

Navigation