Skip to main content
Log in

A New Assay to Monitor the Degranulation Process in Phagocytizing Human Neutrophils

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The microbicidal activity of phagocytes depends on intraphagosomal secretion (i.e., the degranulation process), during which the content of the secretory granules is discharged into the phagosome to kill ingested microorganisms. The availability of a reliable assay to quantify the extent of degranulation can be an important tool to gain a deeper insight into the mechanism of bacterial processing in phagocytes and into the transmembrane signaling that leads to granule–phagosome fusion. In an early study, Baehner et al. (25) showed by using the peroxidase chromogenic substrate DAB that the occurence of intraphagosomal MPO release in human neutrophils. Starting from that finding and from that of Herzog and Fahimi (26), who reported the quantitative evaluation of peroxidase-mediated DAB oxidation, we set up a method for measuring MPO intraphagosomal release in human neutrophils. The method is based on the passive engulfment of DAB together with the phagocytosable particle. Inside the vacuole, this substrate is oxidized by MPO released from the azurophilic granules. The colorimetrical evaluation of the amount of DAB oxidized allows for cheap, rapid quantification of MPO intraphagosomal secretion in whole cells. Using this method, we show that the degranulation process, involving azurophilic granules, can be monitored carefully during phagocytosis. It takes place after the ingestion of zymosan particles opsonized with normal human serum, as well as during IgG-mediated phagocytosis and under conditions where β2 integrins are blocked. However our findings also show that the extent of intraphagosomal secretion depends on either the extent of opsonization or the type of receptor engaged during the phagocytic event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Elsbach, P. and J. Weiss. 1992. Oxygen-independent antimicrobial systems of phagocytes. In J. I. Gallin, I. M. Goldstein, and R. Snyderman, eds. Inflammation: Basic principles and clinical correlates, 2d ed. New York: Raven Press, 603–636.

    Google Scholar 

  2. Henson, P. M., J. E. Henson, C. Fittschein, G. Kimani, D. L. Bratton, and D. W. H. Riches. 1992. Degranulation and secretion by phagocytic cells. In J. I. Gallin, I. M. Goldstein, and R. Snyderman, eds. Inflammation: Basic principles and clinical correlates, 2d ed. New York: Raven Press, 511–539.

    Google Scholar 

  3. Malik, Z. A., G. M. Denning, and D. J. Kusner. 2000. Inhibition of Ca(2+) signaling by Mycobacterium tuberculosis is associated with reduced phagosome-lysosome fusion and increased survival within human macrophages. J. Exp. Med. 191:87.

    Google Scholar 

  4. Ferrari, G., H. Langen, M. Naito, and J. Pieters. 1999. A coat protein on phagosomes involved in the intracellular survival of mycobacteria. Cell 97:435.

    Google Scholar 

  5. Ishibashi, Y. and T. Arai. 1990. Role of complement receptor type 1 (CR1) and type 3 (CR3) on phagocytosis and subsequent phagosome-lysosome fusion in Salmonella-infected murine macrophages. FEMS Microbiol. Immunol. 64:89.

    Google Scholar 

  6. Sinai, A. P. and K. A. Joiner. 1997. SAFE HAVEN: The cell biology of nonfusogenic pathogen vacuoles. Annu. Rev. Microbiol. 51:415.

    Google Scholar 

  7. Sudhof, T. Y. C., P. DeCamilli, H. Niemann, and. R. Jahn. 1993.Membrane fusion machinery: Insight from synaptic proteins. Cell 75:1.

    Google Scholar 

  8. Brumell, J. H., H. Volchuk, H. Sengelov, N. Borregaard, A. M. Cieutat, D. F. Bainton, S. Grinstein, and A. Klip. 1995. Subcellular distribution of docking ?fusion proteins in neutrophils, secretory cells with multiple exocytotic compartments. J. Immunol. 155:5750.

    Google Scholar 

  9. Berton, G. 1992. Degranulation. In J. I. Gallin and R. Snyderman, eds. Inflammation: Basic principles and clinical correlates, 3d ed.New York: Raven Press, 703–719.

    Google Scholar 

  10. Smolen, J. E., R. J. Hessler, W. M. Nauseef, M. Goedken, and Y.Joe. Identification and cloning of the SNARE proteins VAMP-2 and syntaxin-4 from HL-60 cells and human neutrophils. Inflamm. 25:255.

  11. Klebanoff, S. J. and R. A. Clark. 1978. Degranulation. In S. J. Klebanoff and R. A. Clark, eds. The Neutrophil: Function and Clinical Disorders, Amsterdam: North Holland Publishing, 217–281.

  12. Vita, F., M. R. Soranzo, V. Borelli, P. Bertoncin, and G. Zabucchi. 1996. Subcellular localization of the small GTPase Rab5a in resting and stimulated human neutrophils. Exp. Cell. Res. 227:367.

    Google Scholar 

  13. Via, L. E., D. Deretic, R. J. Ulmer, N. S. Hibler, L. A. Huber, and V. Deretic. 1997. Arrest of mycobacterial phagosome maturation is caused by a block in vesicle fusion between stages controlled by Rab5 and Rab7. J. Biol. Chem. 272:13326.

    Google Scholar 

  14. Stossel, T. P., T. D. Pollard, R. J. Mason, and M. Vaugham. 1971. Isolation and properties of phagocytic vesicles from polymorphonuclear leukocytes. J. Clin. Invest. 50:1745.

    Google Scholar 

  15. Stossel, T. P., R. K. Rool, and M. Vaughan. 1972. Phagocytosis in chronic granulomatous desease and the Chediak-Higasci syndrome.N. Engl. J. Med. 286:120.

    Google Scholar 

  16. Joiner, K. A., T. Ganz, J. Albert, and D. Rotrosen. 1989. The opsonizing ligand on Salmonella typhimurium influences incorporation of specific, but not azurophil granule constituents into neutrophil phagosomes. J. Cell. Biol. 109:2771.

    Google Scholar 

  17. Pitt, A., L. S. Mayorga, P. D. Stahl, and A. L. Schwartz. 1992.Alteration in the protein composition of maturing phagosomes. J.Clin. Invest. 90:1978.

    Google Scholar 

  18. Leffell, M. S., and J. K. Spitznagel. 1975. Fate of human neutrophils: Effects of immunoglobulin G subclasses and immunocomplexes coated on latex beads. Infect. Immun. 12:813.

    Google Scholar 

  19. Menegazzi, R., G. Zabucchi, A. Knowles, R. Cramer, and P. Patriarca. 1992. A new one-step assay on whole-cell suspension for peroxidase secretion by human neutrophils and eosinophils. J.Leukoc. Biol. 52:619.

    Google Scholar 

  20. Ding, Y., M. Haapasalo, E. Kerosuo, K. Lounatmaa, A. Kotiranta, and T. Sorsa. 1997. Release and activation of human neutrophil matrix metalloproteinases during phagocytosis of Fusobacterium nucleatum, Porphyromonas gingivalis, and Treponema denticola.J. Clin. Periodontol. 24:237.

    Google Scholar 

  21. Weissmann, G., J. E. Smolen, and H. M. Korchak. 1980. Release of inflammatory mediators from stimulated neutrophils. N. Eng. J.Med. 303:27.

    Google Scholar 

  22. Fittschen, C. and P. M. Henson. 1994. Linkage of azurophilic granule secretion in neutrophils to chloride-ion transport and endosomal transcytosis. J. Clin. Invest. 93:247.

    Google Scholar 

  23. Zabucchi, G., M. R. Soranzo, and D. Romeo. 1975. Exocytosis in human polymorphonuclear leukocytes induced by A23 and calcium.FEBS Lett. 54:44.

    Google Scholar 

  24. Zabucchi, G. and D. Romeo. 1976. The dissociation of exocytosis and stimulation in leukocyte by ionophores. Biochem. J. 156:209.

    Google Scholar 

  25. Baehner, R. L., M. J. Karnovsky, and M. L. Karnovsky. 1969.Degranulation of leukocytes in chronic granulomatous disease. J.Clin. Invest. 48:187.

    Google Scholar 

  26. Herzog, W. and D. Fahimi. 1973. A new sensitive colorimetric assay for peroxidase using 3,3?-diaminobenzidine as hydrogen donor. Anal. Biochem. 55:554.

    Google Scholar 

  27. Nickells, M., R. Hauhart, M. Krych, V. B. Subramanian, K. Georghegan-Barek, H. C. Marsh Jr., and J. P. Atkinson. 1998.Mapping epitopes for 20 monoclonal antibodies to CR1. Clin. Exp.Immunol. 112:27.

    Google Scholar 

  28. Botto, M., K. J. Fong, A. K. So, A. Rudge, and M. J. Walport. 1990. Molecular basis of hereditary C3 deficiency. J. Clin. Invest. 86:1158.

    Google Scholar 

  29. Zabucchi, G., M. R. Soranzo, R. Menegazzi, P. Bertoncin, E. Nardon, and P. Patriarca. 1989. Uptake of human eosinophil peroxidase and myeloperoxidase by cells involved in the inflammatory process. J. Histochem. Cytochem. 37:499.

    Google Scholar 

  30. Tapper, H. and S. Grinstein. 1997. Fc receptor-triggered insertion of secretory granules into the plasma membrane of human neutrophils.J. Immunol. 159:409.

    Google Scholar 

  31. Guibault, G. G., P. Brignac Jr., and M. Zimmer. 1966. HomovanilBorelli, Perrotta, Vita, Soranzo, and Zabucchi 60 lic acid as a fluorometric substrate for oxidative enzymes. Anal.Chem. 38:190.

    Google Scholar 

  32. Dri, P., P. Bellavite, G. Berton, and F. Rossi. 1978. Interrelationship between oxygen consumption, superoxide anion and hydrogen peroxide formation in phagocytosing guinea-pig polymorphonuclear leukocytes. Mol. Cell. Biochem. 23:109.

    Google Scholar 

  33. Root, R. K. and J. A. Metcalf. 1977. H2O2 release from human granulocytes during phagocytosis. J. Clin. Invest. 60:1266.

    Google Scholar 

  34. Rossi, F., P. Bellavite, A. Dobrina, P. Dri, and G. Zabucchi. 1980.Oxidative metabolism of mononuclear phagocytes. In R. Van Furth, ed. Mononuclear phagocytes I: Functional aspects, part II.The Hague: Martinus Nijhoff Publisher, 1187–1217.

    Google Scholar 

  35. Rossi, F., P. Bellavite, G. Berton, P. Dri, and G. Zabucchi. 1982.The respiratory burst of phagocytic cells: Facts and problems. In F. Rossi and P. Patriarca, eds. Biochemistry and function of phagocytes.New York: Plenum Publishing, 283–322.

  36. Astarie-Dequeker, C., N. N'Diaye, V. M. Le Cabec, M. G. Rittig, J. Prandi, and I. Maridonneau-Parini. 1999. The mannose receptor mediates uptake of pathogenic and nonpathogenic mycobacteria and bypasses bactericidal responses in human macrophages. Infect.Immun. 67:469.

    Google Scholar 

  37. Oh, Y. K. and R. M. Straubinger. 1996. Intracellular fate of Mycobacteium avium: Use of dual-label spectrophotometry to investigate the influence of bacterial viability and opsonization on phagosomal pH and phagosome-lysosome interaction. Infect.Immun. 64:319.

    Google Scholar 

  38. Kuijpers, T. W., A. T. J. Tool, C. E. van der Schoot, L. A. Ginsel, J. S. M. Onderwater, D. Roos, and A. J. Verhoeven. 1991. Membrane surface antigen expression on neutrophils: A reappraisal of the use of surface markers for neutrophil activation. Blood 78:1105.

    Google Scholar 

  39. Klebanoff, S. J. and R. A. Clark. 1978. Structure. In S. J. Klebanoff and R. A. Clark, eds. The neutrophil: Function and clinical disorders. Amsterdam: North Holland Publishing, 5–72.

    Google Scholar 

  40. Weiss, S. J. and A. F. LoBuglio. 1982. Phagocyte-generated oxygen metabolites and cellular injury. Lab. Invest. 47:5.

    Google Scholar 

  41. Schleiffenbaum, B., R. Moser, M. Patarroyo, and J. Fehr. 1989.The cell surface glycoprotein Mac1 (CD11b ?CD18) mediates neutrophil adhesion and modulates degranulation independently of its quantitative cell surface expression. J. Immunol. 142:3537.

    Google Scholar 

  42. Lu, H., C. W. S mith, J. Perrard, D. Bullard, L. Tang, S. B. Shappele, M. L. Entman, A. L. Beaudet, and C. M. Ballantyne. 1997.LFA1 is sufficient in mediating neutrophil emigration in Mac1-deficient mice. J. Clin. Invest. 99:1340.

    Google Scholar 

  43. Tosi, M. F., H. Zachem, and M. Berger. 1990. Neutrophil elastase cleaves C3bi on opsonized Pseudomonas as well as CR1 on neutrophils to create a functionally important opsonin receptor mismatch.J. Clin. Invest. 83:300.

    Google Scholar 

  44. Drevets, D. A., B. P. Canono, and P. A. Campbell. 1992. Listericidal and nonlistericidal mouse macrophages differ in complement receptor type 3-mediated phagocytosis of L. monocytogenes in preventing escape of the bacteria into the cytoplasm. J. Leukol.Biol. 52:70.

    Google Scholar 

  45. Greenberg, S. 1995. Signal transduction of phagocytosis. Cell.Biol. 5:93.

    Google Scholar 

  46. Riley, L. W. 1995. Determinants of cell entry and intracellular survival of Mycobacterium tuberculosis. Trends Microbiol. 3:27.

    Google Scholar 

  47. Allen, L. H. and A. Aderem. 1996. Molecular definition of distinct cytoskeletal structures involved in complement and Fc receptor-mediated phagocytosis in macrophages. J. Exp. Med. 184:627.

    Google Scholar 

  48. Fenton, M. J., and M. W. Vermeulen. 1996. Immunopathology of tuberculosis: Roles of macrophages and monocytes. Infect. Immun. 64:683.

    Google Scholar 

  49. Ernst, J. 1998. Macrophage receptors for Mycobacterium tuberculosis.Infect. Immun. 66:1277.

    Google Scholar 

  50. Yan, J., V. Vetvicka, Y. Xia, A. Coxon, M. C. Carolli, T. N. Mayadas, and G. D. Ross. 1999. b-glucan, a "specific" biologic response modifier that uses antibodies to target tumors for cytotoxic recognition by leukocyte complement receptor type 3 (CD11b ?CD18). J. Immunol. 163:3045.

    Google Scholar 

  51. Wright, S. D. and S. C. Silverstein. 1983. Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen from human phagocytes. J. Exp. Med. 158:2016.

    Google Scholar 

  52. Caron, E. and A. Hall. 1998. Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282:1717.

    Google Scholar 

  53. Nepomuceno, R. R. and A. J. Tenner. 1997. C1qRp, the C1q receptor that enhances phagocytosis, is detected specifically in human cells of myeloid lineage, endothelial cells and platelets. J.Immunol. 160:1929.

    Google Scholar 

  54. Cross, C. E., H. L. Collins, and G. J. Bancroft. 1997. CR3-dependent phagocytosis by murine macrophages: Different cytokines regulate ingestion of a defined CR3 ligand and complementopsonized Cryptococcus neoformans. Immunology 91:289.

    Google Scholar 

  55. Ehlers, M. R. W. 1998. Interaction between Mycobacterium tuberculosis and host cells: Are mycobacterial sugars the key? Trends Microbiol. 6:328.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borelli, V., Perrotta, M.G., Vita, F. et al. A New Assay to Monitor the Degranulation Process in Phagocytizing Human Neutrophils. Inflammation 26, 45–60 (2002). https://doi.org/10.1023/A:1014473813304

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014473813304

Navigation