Skip to main content
Log in

Harlequin (hlq) and short blue root (sbr), two Arabidopsis mutants that ectopically express an abscisic acid- and auxin-inducible transgenic carrot promoter and have pleiotropic effects on morphogenesis

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Plant growth and development is regulated by complex interactions among different hormonal, developmental and environmental signalling pathways. Isolation of mutants in these processes is a powerful approach to dissect unknown mechanisms in regulatory networks. The plant hormones abscisic acid (ABA) and auxin are involved in vegetative, developmental and environmental growth responses, including cell division and elongation, vascular tissue differentiation and stress adaptation. The uidA (β-glucuronidase; GUS) reporter gene driven by the carrot (Daucus carota) late embryogenesis-abundant Dc3 promoter in transgenic Arabidopsis thaliana seedlings is ABA-inducible in the root zone of elongation and vasculature. We show here that the ABA-insensitive2-1 mutation (abi2) reduces ABA-inducible Dc3-GUS expression in these root tissues. Dc3-GUS expression is also induced in root cortex cells by indole-3-acetic acid. We mutagenized, with ethyl methane sulfonate, 5100 M1 abi2/abi2 homozygous plants of a line that carries two independent Dc3-GUS reporter genes and screened M2 clonal lines for ABA-inducible Dc3-GUS expression in roots. We isolated two novel single-gene nuclear mutants, harlequin (hlq) and short blue root (sbr), that ectopically express Dc3-GUS in roots and have pleiotropic effects on morphogenesis. The hlq mutant expresses Dc3-GUS in a checkered pattern in epidermis of roots and hypocotyls, accumulates callose and has deformed and collapsed epidermal cells and abnormal and reduced root hairs and leaf trichomes. It (hlq) is also dwarfed, skotomorphogenic and sterile. The sbr mutant is a seedling-lethal dwarf that over-expresses Dc3-GUS in the root and has radially swollen epidermal cells in the root and hypocotyl, supernumerary cell number in the root cortex and epidermis, abnormal vasculature, and abnormal epidermal cell patterning in cotyledons and leaves. It (sbr) also exhibits a semidominant root phenotype of reduced growth and lateral root initiation. The hlq and sbr mutants are not rescued by exogenous application of plant growth regulators. The hlqand sbr mutants do not require the abi2-1 mutant gene for their phenotypes and map to chromosome III and I, respectively. Further characterization of the hlq and sbr phenotypes and genes may provide insights into the relationship of hormone- and stress-regulated gene expression to morphogenesis and plant growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baskin, T.I., Betzner, A.S., Hoggart, R., Cork, A. and Williamson, R.E. 1992. Root morphology mutants in Arabidopsis thaliana. Aust. J. Plant Physiol. 19: 427-438.

    Google Scholar 

  • Bell, C.J. and Ecker, J.R. 1994. Assignment of microsatellite loci to the linkage map of Arabidopsis. Genomics 19: 137-144.

    Google Scholar 

  • Benfey, P.N., Linstead, P.J., Roberts, K., Schiefelbein, J.W., Hauser, M. and Aeshbacher, R.A. 1993. Root development in Arabidopsis: four mutants with dramatically altered root morphogenesis. Development 119: 57-70.

    Google Scholar 

  • Bougourd, S., Marrison, J. and Haseloff, J. 2000. An aniline blue staining procedure for confocal microscopy and 3D imaging of normal and perturbed cellular phenotypes in mature Arabidopsis embryos. Plant J. 24: 543-550.

    Google Scholar 

  • Bowling, S.A., Guo, A., Cao, H., Gordon, A.S., Klessig, D.F. and Dong, X. 1994. A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. Plant Cell 6: 1845-1857.

    Google Scholar 

  • Caño-Delgado, A.I., Metzioff, K. and Bevan., M.W. 2000. The eli1 mutation reveals a link between cell expansion and secondary cell wall formation in Arabidopsis thaliana. Development 127: 3395-3405.

    Google Scholar 

  • Chak, R.K.F., Thomas, T.L., Quatrano, R.S. and Rock, C.D. 2000. The genes ABI1 and ABI2 are involved in abscisic-acidand drought-inducible expression of the Daucus carota L. Dc3 promoter in guard cells of transgenic Arabidopsis thaliana L. Heynh. Planta 210: 875-883.

    Google Scholar 

  • Chory, J., and Wu, D. 2001. Weaving the complex web of signal transduction. Plant Physiol. 125: 77-80.

    Google Scholar 

  • Desikan, R., Hagenbeek, D., Neill, S.J. and Rock, C.D. 1999. Flow cytometry and surface plasmon resonance analyses demonstrate that the monoclonal antibody JIM19 interacts with a rice cell surface component involved in abscisic acid signalling in protoplasts. FEBS Lett. 456: 257-262.

    Google Scholar 

  • Edwards, K., Johnstone, C. and Thompson, C. 1991. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucl. Acids Res. 19: 1349.

    Google Scholar 

  • Finkelstein, R.R. and Lynch, T.J. 2000. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12: 599-609.

    Google Scholar 

  • Foster, R. and Chua, N.H. 1999. An Arabidopsis mutant with deregulated ABA gene expression: implications for negative regulator function. Plant J. 17: 363-372.

    Google Scholar 

  • Gampala, S.S., Hagenbeek, D. and Rock, C.D. 2001. Functional interactions of lanthanum and phospholipase D with abscisic acid and signaling effectors VIVIPAROUS1 and ABA-INSENSITIVE1-1 in rice protoplasts. J. Biol. Chem. 276: 9855-9860.

    Google Scholar 

  • Gaymard, F., Pilot, G., Lacombe, B., Bouchez, D., Bruneau, D., Boucherez, J., Michaux-Ferriere, N., Thibaud, J.B. and Sentenac, H. 1998. Identification and disruption of a plant Shaker-like outward channel involved in K+ release into the xylem sap. Cell 94: 647-655.

    Google Scholar 

  • Gosti, F., Beaudoin, N., Serizet, C., Webb, A.A.R., Vartanian, N. and Giraudat, J. 1999. The ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell 11: 1897-1909.

    Google Scholar 

  • Himmelbach, A., Iten, M. and Grill, E. 1998. Signalling of abscisic acid to regulate plant growth. Phil. Trans. R. Soc. Lond. 353: 1439-1444.

    Google Scholar 

  • His, I., Driouich, A., Nicol, F., Jauneau, A. and Höfte, H. 2001. Altered pectin composition in primary cell walls of korrigan, a dwarf mutant of Arabidopsis deficient in a membrane-bound endo-1,4-β-glucanase. Planta 212: 348-358.

    Google Scholar 

  • Hong, J.C., Cheong, Y.H., Nagao, R.T., Bahk, J.D., Key, J.L. and Cho, M.J. 1995. Isolation of 2 soybean G-box binding factors which interact with a G-Box sequence of an auxin-responsive gene. Plant J. 8: 199-211.

    Google Scholar 

  • Hung, C.Y., Lin, Y., Zhang, M., Pollock, S., Marks, M.D. and Schiefelbein, J. 1998. A common position-dependent mechanism controls cell-type patterning and GLABRA2 regulation in the root and hypocotyl epidermis of Arabidopsis. Plant Physiol. 117: 73-84.

    Google Scholar 

  • Ishitani, M., Xiong, L., Stevenson, B. and Zhu, J.K. 1997. Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic aciddependent and abscisic acid-independent pathways. Plant Cell 9: 1935-1949.

    Google Scholar 

  • Kende, H. and Zeevaart, J.A.D. 1997. The five 'classical' plant hormones. Plant Cell 9: 1197-1210.

    Google Scholar 

  • Kim, S.Y., Chung, H.J. and Thomas, T.L. 1997. Isolation of a novel class of bZIP transcription factors that interact with ABA-responsive and embryo-specification elements in the Dc3 promoter using a modified yeast one-hybrid system. Plant J. 11: 1237-1251.

    Google Scholar 

  • Klotz, K.L. and Lagrimini, L.M. 1996. Phytohormone control of the tobacco anionic peroxidase promoter. Plant Mol. Biol. 31: 565-573.

    Google Scholar 

  • Konieczny, A. and Ausubel, F.M. 1993. A procedure for mapping Arabidopsis mutation using co-dominant ecotype specific markers. Plant J. 4: 403-410.

    Google Scholar 

  • Koornneef, M., Alonso-Blanco, C. and Stam, P. 1998. Genetic analysis. In: J.M. Martínez-Zapater and J. Salinas (Eds.) Arabidopsis Protocols. Humana Press, Totowa, NJ, pp. 105-117.

    Google Scholar 

  • Koornneef, M., Karssen, C.M. and Reuling, G. 1984. The isolation and characterization of abscisic acid insensitive mutants of Arabidopsis thaliana. Physiol. Plant. 61: 377-383.

    Google Scholar 

  • Kovtun, Y., Chiu, W.L., Zeng, W.K. and Sheen, J. 1998. Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature 395: 716-720.

    Google Scholar 

  • Lee, M.M. and Schiefelbein, J. 1999. WEREWOLF, a MYB-related protein in Arabidopsis, is a position-dependent regulator of epidermal cell patterning. Cell 99: 473-483.

    Google Scholar 

  • Leung, J. and Giraudat, J. 1998. Abscisic acid signal transduction. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 199-222.

    Google Scholar 

  • Leung, J., Merlot, S. and Giraudat, J. 1997. The Arabidopsis Abscisic Acid-Insensitive2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9: 759-771.

    Google Scholar 

  • Lew, R.R. 1996. Pressure regulation of the electrical properties of growing Arabidopsis thaliana L. root hairs. Plant Physiol. 112: 1089-1100.

    Google Scholar 

  • Li, H.M., Altschmied, L. and Chory, J. 1994. Arabidopsis mutants define downstream branches in the phototransduction pathway. Genes. Dev. 8: 339-349.

    Google Scholar 

  • Li, Y., Wu, Y.H., Hagen, G. and Guilfoyle, T. 1999. Expression of the auxin-inducible GH3 promoter GUS fusion gene as a useful molecular marker for auxin physiology. Plant Cell Physiol. 40: 675-682.

    Google Scholar 

  • Lightner, J. and Caspar, T. 1998. Seed mutagenesis of Arabidopsis. In: J.M. Martínez-Zapater and J. Salinas (Eds.) Arabidopsis Protocols, Humana Press, Totowa, NJ, pp. 91-103.

    Google Scholar 

  • Majewska-Sawka, A. and Nothnagel, E.A. 2000. The multiple roles of arabinogalactan proteins in plant development. Plant Physiol. 122: 3-9.

    Google Scholar 

  • Mattson, J., Sung, Z.R. and Berleth, T. 1999. Responses of plant vascular systems to auxin transport inhibition. Development 126: 2979-2991.

    Google Scholar 

  • Miséra, S., Muller, A.J., Weilandheidecker, U. and Jürgens, G. 1994. The fusca genes of Arabidopsis: negative regulators of light responses. Mol. Gen. Genet. 244: 242-252.

    Google Scholar 

  • Nagpal, P., Walker, L.M., Young, J.C., Sonawala, A., Timpte, C., Estelle, M. and Reed, J.W. 2000. AXR2 encodes a member of the Aux/IAA protein family. Plant Physiol. 123: 563-573.

    Google Scholar 

  • Noguchi, H.K. 2000. Effects of plant hormones on the activity of alcohol dehydrogenase in lettuce seedlings. J. Plant Physiol. 157: 223-225.

    Google Scholar 

  • Oono, Y., Chen, Q.G., Overvoorde, P.J., Köhler, C. and Theologis, A. 1998. age mutants of Arabidopsis exhibit altered auxin-regulated gene expression. Plant Cell 10: 1649-1662.

    Google Scholar 

  • Pitts, R.J., Cernac, A. and Estelle, M. 1998. Auxin and ethylene promote root hair elongation in Arabidopsis. Plant J. 16: 553-560.

    Google Scholar 

  • Rock, C.D. 2000. Pathways to abscisic acid-regulated gene expression. New Phytol. 148: 357-396.

    Google Scholar 

  • Rodriguez, P.L., Benning, G. and Grill, E. 1998. ABI2, a second protein phosphatase 2C involved in abscisic acid signal transduction in Arabidopsis. FEBS. Lett. 421: 185-190.

    Google Scholar 

  • Schnall, J.A. and Quatrano, R.S. 1992. Abscisic acid elicits the water-stress response in root hairs of Arabidopsis thaliana. Plant Physiol. 100: 216-218.

    Google Scholar 

  • Scholl, R., Rivero-Lepinckas, L. and Crist, D. 1998. Growth of plants and preservation of seeds. In: J.M. Martínez-Zapater and J. Salinas (Eds.) Arabidopsis Protocols, Humana Press, Totowa, NJ, pp. 1-12.

    Google Scholar 

  • Siddiqui, N.U., Chung, H.J., Thomas, T.L. and Drew, M.C. 1998. Abscisic acid-dependent and-independent expression of the carrot late-embryogenesis-abundant class gene Dc3 in transgenic tobacco seedlings. Plant Physiol. 118: 1181-1190.

    Google Scholar 

  • Strizhov, N., Abraham, E., Okresz, L., Blickling, S., Zilberstein, A., Schell, J., Koncz, C. and Szabados, L. 1997. Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant J. 12: 557-569.

    Google Scholar 

  • Ulmasov, T., Hagen, G. and Guilfoyle, T.J. 1997. ARF1, a transcription factor that binds to auxin response elements. Science 276: 1865-1868.

    Google Scholar 

  • Vernoux, T., Wilson, R.C., Seeley, K.A., Reichheld, J.P., Muroy, S., Brown, S., Maughan, S.C., Cobbett, C.S., Van Montagu, M., Inzé, D., May, M.J. and Sung, Z.R. 2000. The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12: 97-110.

    Google Scholar 

  • Wada, T., Tachibana, T., Shimura, Y. and Okada, K. 1997. Epidermal cell differentiation in Arabidopsis determined by a Myb homolog, CPC. Science 277: 1113-1116.

    Google Scholar 

  • Walker, A.R., Davison, P.A. and Bolognesi-Winfield, A.C. 1999. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 11: 1337-1349.

    Google Scholar 

  • Wang, M., Heimovaara-Dijkstra, S., van der Meulen, R.M., Knox, J.P. and Neill, S.J. 1995. The monoclonal antibody JIM19 modulates abscisic acid action in barley aleurone protoplasts. Planta 196: 271-276.

    Google Scholar 

  • Wasteneys, G.O. 2000. The cytoskeleton and growth polarity. Curr. Opin. Plant Biol. 3: 503-511.

    Google Scholar 

  • Worley, C.K., Zenser, N., Ramos, J., Rouse, D., Leyser, O., Theologis, A. and Callis, J. 2000. Degradation of Aux/IAA proteins is essential for normal auxin signalling. Plant J. 21: 553-562.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subramanian, S., Rajagopal, B. & Rock, C.D. Harlequin (hlq) and short blue root (sbr), two Arabidopsis mutants that ectopically express an abscisic acid- and auxin-inducible transgenic carrot promoter and have pleiotropic effects on morphogenesis. Plant Mol Biol 49, 93–105 (2002). https://doi.org/10.1023/A:1014472417150

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014472417150

Navigation