Skip to main content
Log in

Thermodynamic Properties of NaCl Solutions at Subzero Temperatures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Heat capacities at infinite dilution of NaCl (aq) for the temperature range 0 to −25°C and apparent molar volumes at infinite dilution for 0 to −15°C have been estimated from a synthesis of experimental data collected at subzero temperatures. The parameters of the Helgeson–Kirkham–Flowers (HKF) equation for Na+ (aq) have been obtained, from which the Gibbs energies of Na+ and Cl have been calculated. The estimated values of Pitzer-equation parameters for thermal and activity-coefficient properties have been adjusted for subzero temperatures. The experimental phase diagram for the NaCl–H2O system could be reproduced with these data, demonstrating the low-temperature applicability of the HKF model to extrapolate thermodynamic properties of aqueous-solution species at infinite dilution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. G. Archer, J. Phys. Chem. Ref. Data 21, 793 (1992).

    Google Scholar 

  2. R. J. Spencer, N. Møller, and J. Weare, Geochim. Cosmochim. Acta 54, 575 (1990).

    Google Scholar 

  3. J. C. Tanger, IV and H. C. Helgeson, Amer. J. Sci. 288, 19 (1988).

    Google Scholar 

  4. C. A. Angell, in Water, a Comprehensive Treatise, F. Franks, ed., Vol. 7 (Plenum, New York, 1982), pp 1–82.

    Google Scholar 

  5. K. S. Pitzer, Thermodynamics, 3rd edn. (McGraw-Hill, New York, 1995).

    Google Scholar 

  6. R. Cohen-Adad and J. Lorimer, eds. Alkali Metals and Ammonium Chlorides in Water and Heavy Water (Binary Systems). Solubility Data Series, Vol. 47, (Pergamon, Oxford, 1991).

    Google Scholar 

  7. J. W. Johnson, E. H. Oelkers, and H. C. Helgeson, Comp. Geosci. 18, 899 (1992).

    Google Scholar 

  8. P. G. Hill, J. Phys. Chem. Ref. Data 19, 1233 (1990).

    Google Scholar 

  9. D. E. Hare and C. M. Sorensen, J. Chem. Phys. 85, 4840 (1987).

    Google Scholar 

  10. C. A. Angell, M. Oguni, and W. J. Sichina, J. Phys. Chem. 86, 998 (1982).

    Google Scholar 

  11. D. G. Archer and P. Wang, J. Phys. Chem. Ref. Data 19, 371 (1990).

    Google Scholar 

  12. J. B. Hasted and M. Shahidi, Nature (London) 262, 777 (1976).

    Google Scholar 

  13. I. M. Hodge and C. A. Angell, J. Phys. Chem. 68, 1363 (1978).

    Google Scholar 

  14. D. Bertolini, M. Cassettari, and G. Salvetti, J. Phys. Chem. 76, 3285 (1982).

    Google Scholar 

  15. M. V. Mironenko, G. E. Boitnott, S. A. Grant, and R. S. Sietten, J. Phys. Chem. 105, 9909 (2001).

    Google Scholar 

  16. M. V. Mironenko, S. A. Grant, and G. M. Marion, J. Solution. Chem. 26, 433 (1997).

    Google Scholar 

  17. K. S. Pitzer, J. C. Peiper, and R. H. Busey, J. Phys. Chem. Ref. Data 13, 1 (1984).

    Google Scholar 

  18. B. S. Krumgalz, R. Podgorelskii, and K. S. Pitzer, J. Phys. Chem. Ref. Data 25, 663 (1996).

    Google Scholar 

  19. P. S. Z. Rogers and K. S. Pitzer, J. Phys. Chem. Ref. Data 11, 15 (1982).

    Google Scholar 

  20. D. G. Albert and R. W. Carter, J. Phys. Chem. 104, 8563 (2000).

    Google Scholar 

  21. V. P. Glushko, ed., Termodinamicheskie svoistva individual'nykh veshchestv, (Thermodynamic Properties of Individual Substances), Vol. 1 (Nauka, Moscow, 1981) (in Russian).

    Google Scholar 

  22. M. V. Mironenko, S. A. Grant, and G. M. Marion, FREZCHEM2, A Chemical Thermodynamic Model for Electrolyte Solutions at Subzero Temperatures. CRREL Special Report 97-05 (Cold Regions Research and Engineering Laboratory, Hanover, NH, 1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akinfiev, N.N., Mironenko, M.V. & Grant, S.A. Thermodynamic Properties of NaCl Solutions at Subzero Temperatures. Journal of Solution Chemistry 30, 1065–1080 (2001). https://doi.org/10.1023/A:1014445917207

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014445917207

Navigation