Journal of Insect Behavior

, Volume 15, Issue 1, pp 37–50 | Cite as

Possible Regulation of Feeding Behavior in Cockroach Nymphs by the Neurotransmitter Octopamine

  • Randy W. Cohen
  • Danielle A. Mahoney
  • Huong D. Can


Insects, including cockroaches, have the ability to select a proper diet from different nutrient choices. We have showed previously that various neurotransmitters and neuromodulators appear to regulate certain aspects of feeding in the cockroach, Rhyparobia madera. In the current study, we examined the role of octopamine in feeding behavior of cockroach nymphs. By either injection or direct incorporation into the diet blocks, an octopamine agonist (octopamine or synephrine) or antagonist (phentolamine) was effective in altering feeding in R. madera nymphs. Both octopamine and synephrine increased feeding slightly, while phentolamine decreased feeding dramatically. Phentolamine was able to decrease feeding, but not motor activity, when injected directly into the nymphs. Octopamine appears to cause increased feeding in the cockroach.

diet-mixing phentolamine Rhyparobia madera synephrine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abisgold, J. D., and Simpson, S. J. (1998). The effect of dietary protein levels and haemolymph composition on the sensitivity of the maxillary palp chemoreceptors of locusts. J. Exp. Biol. 135: 215–22. Octopamine's Influence on Insect Feeding Behavior 49Google Scholar
  2. Ahmad, I., Waldbauer, G. P., and Friedman, S. (1993). Maxillectomy does not disrupt selfselection by larvae of Manduca sexta (Lepidoptera: Sphingidae). Ann. Entomol. Soc. Am. 86: 458–463.Google Scholar
  3. Angioy, A. M., Tomassini Barbarossa, I., Crnjar, R., and Liscia, A. (1989). Effects of octopaminergic substances on the labellar lobe spreading response in the blowfly Protophormia terraenovae. Neurosci. Lett. 103: 103–107.Google Scholar
  4. Bernays, E. A., and Bright, K. L. (1993). Mechanisms of dietary mixing in grasshoppers: A review. Comp. Biochem. Physiol. 104A: 125–131.Google Scholar
  5. Blundell, J. E. (1986). Serotonin manipulations and the structure of feeding behaviour. Appetite 7: 39–56.Google Scholar
  6. Cohen, R. W. (2001). Diet balancing in the cockroach, Rhyparobia madera: Does serotonin regulate this behavior? J. Insect Behav. 14: 99–111.Google Scholar
  7. Cohen, R.W., Heydon, S. L., Friedman, S., and Waldbauer, G. P. (1987). Nutrient self-selection by the omnivorous cockroach, Supella longipalpa. J. Insect Physiol. 33: 77–82.Google Scholar
  8. Cohen, R. W., Friedman, S., and Waldbauer, G. P. (1988). Physiological control of nutrient self-selection in Heliothis zea larvae: The role of serotonin. J. Insect Physiol. 34: 935–940.Google Scholar
  9. Evans, P. D. (1985). Octopamine. In Kerkut, G. A., and Gilbert, L. (eds.), Comprehensive Insect Biochemistry, Physiology and Pharmacology, Pergamon Press, Oxford, pp. 499–530.Google Scholar
  10. Fields, P. E., and Woodring, J. P. (1991). Octopamine mobilization of lipids and carbohydrates in the house cricket, Acheta domesticus. J. Insect Physiol. 3: 193–199.Google Scholar
  11. Friedman, S., Waldbauer, G. P., Eertmoed, J. E., Naeem, M., and Ghent, A. W. (1991). Blood trehalose levels have a role in the control of dietary self-selection by Heliothis zea larvae. J. Insect Physiol. 37: 919–928.Google Scholar
  12. Howell, K. M., and Evans, P.D. (1998).The characterization of presynaptic octopamine receptors modulating octopamine release from an identified neurone in the locust. J. Exp. Biol. 201: 2053–2060.Google Scholar
  13. Konings, P. N. M., Vullings, H. G. B., van Gemert, W. M. J. B., De Leeuw, R., Diederen, J. H. B., and Jansen, W. F. (1989). Octopamine-binding sites in the brain of Locusta migratoria. J. Insect Physiol. 35: 519–524.Google Scholar
  14. Leibowitz, S. F., and Stanley, B. G. (1986). Neurochemical controls of appetite. In Rolls, E. T. (ed.), Feeding Behavior: Neural and Humoral Controls, Academic Press; New York, pp. 191–234.Google Scholar
  15. Long, T. F., and Murdock, L. L. (1983). Stimulation of blowfly feeding behavior by octopaminergic drugs. Proc. Natl. Acad. Sci. USA 80: 4159–4163.Google Scholar
  16. Nathanson, J. A. (1989). Development of a photoaffinity ligand for octopamine. Mol. Pharmacol. 36: 34–43.Google Scholar
  17. Ramirez, J.-M., and Pearson, K. G. (1990a). Local anesthetic action of phentolamine on insect mechanoreceptors. J. Comp. Physiol. A 167: 475–483.Google Scholar
  18. Ramirez, J.-M., and Pearson, K.G. (1990b). Chemical deafferentation of the locust flight system by phentolamine. J. Comp. Physiol. A 167: 485–494.Google Scholar
  19. Shafi, N., Midgley, J. M., Watson, D. G., and Smail, G. A. (1989). Analysis of biogenic amines in the brain of the american cockroach (Periplaneta americana) by gas chromatographynegative ion chemical ionisation mass spectrometry. J. Chromatogr. 490: 9–19.Google Scholar
  20. Simpson, S. J., and Simpson, C. L. (1990). Mechanisms of nutritional compensation by phytophagous insects. In Bernays, E.A. (ed.), Plant Insect Interactions,CRCPress, Boca Raton, FL, Vol. II, pp. 111–160.Google Scholar
  21. Simpson, S. J., James, S., Simmonds, M. S. J., and Blaney, W.M. (1991).Variation in chemosensilla and control of dietary selection behaviour in the locust. Appetite 17: 141–154.Google Scholar
  22. Stevenson, P. A., and Spörhase-Eichmann, U. (1995). Localization of octopaminergic neurons in insects. Comp. Biochem. Physiol. 110A: 203–215.Google Scholar
  23. Swales, L. S., and Evans, P. D. (1988). Histochemical localization of octopamine-and proctolinsensitive adenylate cyclase activity in a locust skeletal muscle. Histochemistry 90: 233–239.Google Scholar
  24. Vehovsky, A., Elliott, C. J. H., and Elekes, K. (1998). Octopamine: A new feeding modulator in Lymnaea. Phil. Trans. Roy. Soc. Lond. 353: 1631–1643.Google Scholar
  25. Waldbauer, G. P., and Friedman, S. (1991). Self-selection of optimal diets by insects. Annu. Rev. Entomol. 36: 43–63.Google Scholar
  26. Wierenga, J. M., and Hollingworth, R. M. (1990). Octopamine uptake and metabolism in the insect nervous system. J. Neurochem. 54: 479–489.Google Scholar
  27. Wurtman, R. J., and Wurtman, J. J. (1984). Nutrients, neurotransmitter synthesis, and the control of food intake. In Stunkard, A. J., and Stellar, E. (eds.), Eating and Its Disorders, Raven Press, New York, pp. 77–86.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Randy W. Cohen
    • 1
  • Danielle A. Mahoney
    • 1
  • Huong D. Can
    • 1
  1. 1.Department of BiologyCalifornia State University, NorthridgeNorthridge

Personalised recommendations