Skip to main content
Log in

Host plants affect predator fitness via the nutritional value of herbivore prey: Investigation of a plant-aphid-ladybeetle system

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

The interactions among host plants(Medicago sativa L., cv. `OKO8' and Vicia faba L., cv. `Windsor'), aphid prey(Acyrthosiphon pisum Harris, Homoptera:Aphididae), and Coccinella septempunctata L. (Coleoptera: Coccinellidae) preimaginal biology were evaluated. Interactions were measured over a range of limiting daily prey levels (1.2 mg–16.4 mg)from each host plant colony. Compared withA. pisum reared on V. faba, A. pisum reared on M. sativa storedsignificantly more fatty acids which resultedin a 1.17-fold increase in available caloriesfor developing C. septempunctata. Theincreased survival, decreased developmentaltimes, and larger size of C.septempunctata supplied with A. pisumreared on M. sativa clearly demonstratehost plant effects at the third trophic level. At low very limiting daily prey levels, A. pisum reared on M. sativa were moresuitable prey for C. septempunctatasurvival, development, and adult size thanA. pisum reared on V. faba. Coccinella septempunctata survival ratios(larval), developmental times, and adult sizeconverged (were not statistically different)between host plants at higher daily A.pisum levels. These convergence's supportthe hypothesis that there were quantitativedifferences in the nutritional value ofaphids, as influenced by differences in fattyacids and subsequent nutritional levels(calories), between aphids reared on separateplant hosts. The observed tritrophicinteractions appear to be modulated by thebiochemical response of A. pisum to hostplants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A.O.A.C., 1990. Official Methods of Analysis, 15th ed. Association of Official Analytical Chemists. Arlington, VA.

    Google Scholar 

  • Bashir, M.O., 1973. Effect of Nutrition on Development and Reproduction of Aphidophagous Coccinellids with Special Reference to Olla Abdominalis (Say). PhD Dissertation. University of California, Berkeley. 171 pp.

    Google Scholar 

  • Baumgaertner, J.U., A.P. Gutierrez and C.G. Summers, 1981. The influence of aphid prey consumption on searching behavior, weight increase, developmental time, and mortality of Chrysopa carnea (Neuroptera: Chrysopidae) and Hippodamia convergens (Coleoptera: Coccinellidae) larvae. Can. Entomol. 113: 1007–1014.

    Google Scholar 

  • Bergman, D.K., R.M. Edwards, R.C. Berberet and J.W. Dillwith, 1990. Fatty acid composition of pea aphids on two hosts. In: Proc. Aphid-Plant Interactions: Populations to Molecules. Stillwater, OK. MP-132. p. 295.

  • Bergman, D.K., J.W. Dillwith and R.C. Berberet, 1991. Spotted alfalfa aphid, Therioaphis maculata, fatty acids relative to the condition and susceptibility of its host. Arch. Insect Biochem. Physiol. 18: 1–12.

    Google Scholar 

  • Bottrell, D.G., P. Barbosa and F. Gould, 1998. Manipulating natural enemies by plant variety selection and modification: a realistic strategy. Annu. Rev. Entomol. 43: 347–367.

    Google Scholar 

  • Campbell, R.K., D.K. Reed, J.D. Burd and R.D. Eikenbary, 1992. Russian wheat aphid and drought stresses in wheat: tritrophic interactions with Diaeretiella rapae and plant resistance. In: S.B.J. Menken, J.H. Visser and P. Harrewijn (eds.), Proc. 8th Int. Symp. Insect-Plant Relationships. Kluwer Academic Publishers, Dordrecht pp. 297–298.

    Google Scholar 

  • Dillwith, J.W., P.A. Neese and D.L. Brigham, 1993. Lipid biochemistry in aphids. In: D.W. Stanley-Samuelson and D.R. Nelson (eds.), Insect Lipids: Chemistry, Biochemistry, and Biology. University of Nebraska Press, Lincoln and London. pp. 389–434.

    Google Scholar 

  • Giles, K.L., R.D. Madden, M.E. Payton and J.W. Dillwith, 2000. Survival and development of Chrysoperla rufilabris (Neuroptera: Chrysopidae) supplied with pea aphids (Homoptera: Aphididae) reared on alfalfa and faba bean. Environ. Entomol. 29: 304–311.

    Google Scholar 

  • Hodek, I., 1993. Habitat and food specificity in aphidophagous predators. Biocontrol Science and Tech. 3: 91–100.

    Google Scholar 

  • Hodek, I. and A. Hon?ek, 1996. Ecology of Coccinellidae. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Jervis, M. and N. Kidd, 1996. Insect Natural Enemies: Practical Approaches to Their Study and Evaluation. Chapman and Hall, London.

    Google Scholar 

  • Kareiva, P. and R. Sahakian, 1990. Tritrophic effects of a simple architectural mutation in pea plants. Nature. 345: 433–434.

    Google Scholar 

  • Mills, N.J., 1981. Some aspects of the rate of increase of a coccinellid. Ecol. Entomol. 6: 293–299.

    Google Scholar 

  • Neese, P.A., 1995. Fatty acid Metabolism in the Pea Aphid, Acyrthosiphon Pisum (Harris): Regulation in Relation to Plant Host. PhD Dissertation. Oklahoma State University, Stillwater, OK.

    Google Scholar 

  • Obrycki, J.J. and C.A. Orr, 1990. Suitability of three prey species for nearctic populations of Coccinella septempunctata, Hippodamia variegata, and Propylea quatuordecimpunctata (Coleoptera: Coccinellidae). J. Econ. Entomol. 83: 1292–1297.

    Google Scholar 

  • Obrycki, J.J., A.M. Ormord and K.L. Giles, 1997. Partial life table analysis for larval Coleomegilla maculata (Degeer) and Coccinella septempunctata L. (Coleoptera: Coccinellidae). J. Kansas. Entomol. Soc. 70: 339–346.

    Google Scholar 

  • Obrycki, J.J., K.L. Giles and A.M. Ormord, 1998. Interactions between an introduced and indigenous coccinellid species at different prey densities. Oecologia 117: 279–285.

    Google Scholar 

  • Obrycki, J.J. and T.J. Kring, 1998. Predaceous coccinellidae in biological control. Annu. Rev. Entomol. 43: 295–321.

    Google Scholar 

  • Phoofolo, M.W. and J.J. Obrycki, 1995. Comparative life-history studies of nearctic and palearctic populations of Coccinella septempunctata (Coleoptera: Coccinellidae). Environ. Entomol. 24: 581–587.

    Google Scholar 

  • Power, M., 1992. Top-down and bottom-up forces in food webs: do plants have primacy? Ecology 73: 733–746.

    Google Scholar 

  • Price, P.W., 1997. Insect Ecology. John Wiley & Sons, New York.

    Google Scholar 

  • Rice, M.E. and G.E. Wilde, 1989. Antibiosis effect of sorghum on the convergent lady beetle (Coleoptera: Coccinellidae), a third-trophic level predator of the greenbug. J. Econ. Entomol. 82: 570–573.

    Google Scholar 

  • SAS Institute, 1996. Version 6.12. SAS Institute, Cary, NC.

    Google Scholar 

  • Souissi, R. and B. Le Ru, 1997. Effect of host plants on fecundity and development of Apoanagyrus lopezi, and endoparasitoid of the cassava mealybug, Phenacoccus maihoti. Entomol. Exp. Appl. 82: 235–238.

    Google Scholar 

  • Starks, K.J., R. Muniappan and R.D. Eikenbary, 1972. Interaction between plant resistance and parasitism against the greenbug on barley and sorghum. Ann. Entomol. Soc. Am. 65: 650–655.

    Google Scholar 

  • Sundby, R.A., 1968. Some factors influencing the reproduction and longevity of Coccinella septempunctata Linnaeus [(Coleoptera: Coccinellidae)]. Entomophaga 13: 197–202.

    Google Scholar 

  • Thompson, S.N., 1999. Nutrition and culture of entomophagous insects. Annu. Rev. Entomol. 44: 561–592.

    Google Scholar 

  • Thompson, S.N. and K.S. Hagen, 1999. Nutrition of entomophagous insects and other arthropods. In: T.S. Bellows and T.W. Fisher (eds.), Handbook of Biological Control: Principles and Applications of Biological Control. Academic Press, San Diego.

    Google Scholar 

  • van Emden and S.D. Wratten, 1990. Tritrophic interactions involving plants in the biological control of aphids. In: Proc. Aphid-plant Interactions: Populations to Molecules. Stillwater, OK. MP-132. pp. 29–44.

  • Weiser, L.A. and N.E. Stamp, 1998. Combined effects of allelochemicals, prey availability, and supplemental plant material on growth of a generalist insect predator. Entomol. Exper. Appl. 87: 181–189.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giles, K., Madden, R., Stockland, R. et al. Host plants affect predator fitness via the nutritional value of herbivore prey: Investigation of a plant-aphid-ladybeetle system. BioControl 47, 1–21 (2002). https://doi.org/10.1023/A:1014419623501

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014419623501

Navigation