Skip to main content

The IL-2/IL-15 Receptor Systems: Targets for Immunotherapy

Abstract

Although interleukin-2 (IL-2) and -15 (IL-15) share two receptor subunits and many functions, at times they provide contrasting contributions to T-cell-mediated immune responses. IL-2, through its pivitol role in activation-induced cell death (AICD), is involved in peripheral tolerance through the elimination of self-reactive T cells. In contrast, in general IL-15 manifests antiapoptotic actions and inhibits IL-2-mediated AICD. IL-15 stimulates persistence of memory phenotype CD8+ T cells, whereas IL-2 inhibits their expression. Humanized monoclonal antibodies that recognize IL-2Rα, the private receptor for IL-2, are being employed to inhibit allograft rejection and to treat T-cell leukemia/lymphoma. Therapies directed toward inhibiting the actions of the inflammatory cytokine, IL-15, are proposed for an array of autoimmune disorders as well as diseases associated with the retrovirus human T-cell lymphotrophic virus 1.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. 1.

    Baselga J, Norton L, Albanell J, et al: Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Res 58:2825–2831, 1998

    Google Scholar 

  2. 2.

    Maloney DG, Grillo-Lopez AJ, White CA, et al: IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low grade non-Hodgkin's lymphoma. Blood 90: 2188–2195, 1997

    Google Scholar 

  3. 3.

    Waldmann TA: Multichain interleukin-2 receptor: A target for immunotherapy in lymphoma. J Natl Cancer Inst 81:914–923, 1989

    Google Scholar 

  4. 4.

    Waldmann TA, Goldman CK, Bongiovanni KF, et al: Therapy of patients with human T-cell lymphotrophic virus I induced adult T-cell leukemia with anti-Tac, a monoclonal antibody to the receptor for interleukin-2. Blood 72:1805–1816, 1988

    Google Scholar 

  5. 5.

    Waldmann T A: The structure, function, and expression of interleukin-2 receptors on normal and malignant lymphocytes. Science 232:727–732, 1986

    Google Scholar 

  6. 6.

    Waldmann TA, White JD, Carrasquillo JA, et al: Radioimmunotherapy of IL-2R_-expressing adult T-cell leukemia with Yttrium-90 labeled anti-Tac. Blood 86:4063–4075, 1995

    Google Scholar 

  7. 7.

    Lehky TJ, Levin M, Kubota R, et al: Reduction in HTLV-1 proviral load and spontaneous lymphoproliferation in HTLV-1-associated myelopathy/tropical spastic paraparesis patients treated with humanized anti-Tac Ann Neurol 44:942–947, 1998

    Google Scholar 

  8. 8.

    Nussenblatt RB, Fortin E, Schiffman R, et al: Treatment of noninfectious intermediate and posterior uveitis with the humanized anti-Tac monoclonal antibody: A phase I/II clinical trial. Proc Natl Acad Sci USA 96: 7462–7466, 1999

    Google Scholar 

  9. 9.

    Maeda M, Arima N, Daitoku Y, et al: Evidence for the interleukin-2 dependent expansion of leukemic cells in adult T cell leukemia. Blood 70:1407–1411, 1987

    Google Scholar 

  10. 10.

    Tendler CL, Greenberg SJ, Blattner WA, et al: Transactivation of interleukin 2 and its receptor induces immune activation in human T-cell lymphotropic virus type I-associated myelopathy: Pathogenic implications and a rationale for immunotherapy. Proc Natl Acad Sci USA 87:5218–5222, 1990

    Google Scholar 

  11. 11.

    Burton JD, Bamford RN, Peters C, et al: A lymphokine, provisionally designated interleukin T and produced by a human adult T-cell leukemia line, stimulates T-cell proliferation and the induction of lymphokine-activated killer cells. Proc Natl Acad Sci USA 91:4935–4939, 1994

    Google Scholar 

  12. 12.

    Bamford RN, Grant AJ, Burton JD, et al: The interleukin (IL) 2 receptor (?) chain is shared by IL-2 and a cytokine, provisionally designated IL-T that stimulates T-cell proliferation and the induction of lymphokine-activated killer cells. Proc Natl Acad Sci USA 91:4940–4944, 1994

    Google Scholar 

  13. 13.

    Grabstein KH, Eisenman J, Shanebeck K, et al: Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science 264:965–968, 1994

    Google Scholar 

  14. 14.

    Lin JX, Migone TS, Tsang M, et al: The role of shared receptor motifs and common Stat proteins in the generation of cytokine pleiotropy and redundancy by IL-2, IL-4, IL-7, IL-13, and IL-15. Immunity 2:331–339, 1995

    Google Scholar 

  15. 15.

    Waldmann T, Tagaya Y: The multifaceted regulation of interleukin-15 expression and the role of this cytokine in NK cell differentiation and host response to intracellular pathogens, Annu Rev Immunol 17:19–49, 1999

    Google Scholar 

  16. 16.

    Zhang X, Sun S, Hwang I, et al: Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15 Immunity 8:591–599, 1998

    Google Scholar 

  17. 17.

    Ku CC, Murakami M, Sakamoto A, et al: Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science 288: 675–678, 2000

    Google Scholar 

  18. 18.

    Marks-Konczalik J, Dubois S, Losi JM, et al: IL-2-induced activation-induced cell death is inhibited in IL-15 transgenic mice. Proc Natl Acad Sci USA 97:11445–11450, 2000

    Google Scholar 

  19. 19.

    Waldmann TA, Dubois S, Tagaya Y: Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes; implications for immunotherapy. Immunity 14:105–110, 2001

    Google Scholar 

  20. 20.

    Uchiyama, T, Broder S, Waldmann TA: A monoclonal antibody (anti-Tac) reactive with activated and functionally mature human T cells. I. Production of anti-Tac monoclonal antibody and distribution of Tac (+) cells. J. Immunol 126:1393–1397, 1981

    Google Scholar 

  21. 21.

    Tsudo M, Kozak RW, Goldman CK, Waldmann TA: Demonstration of a non-Tac peptide that binds interleukin 2: A potential participant in a multichain interleukin 2 receptor complex. Proc Natl Acad Sci USA 83:9694–9698, 1986

    Google Scholar 

  22. 22.

    Kondo M, Takeshita T, Ishii N, et al: Sharing of the interleukin-2 (IL-2) receptor gamma chain between receptors for IL-2 and IL-4. Science 262:1874–1877, 1993

    Google Scholar 

  23. 23.

    Noguchi M, Nakamura Y, Russell SM, et al: Interleukin-2 receptor chain: A functional component of the interleukin-7 receptor. Science 262:1877–1880, 1993

    Google Scholar 

  24. 24.

    Migone TS, Lin JX, Cereseto A, et al: Constitutively activated Jak-STAT pathway in T cells transformed with HTLV-1. Science 269:79–81, 1995

    Google Scholar 

  25. 25.

    Carson WE, Fehniger TA, Haldar S, et al: A potential role for interleukin-15 in the regulation of human natural killer cell survival. J Clin Invest 99:937–943, 1997

    Google Scholar 

  26. 26.

    Armitage RJ, Macduff BM, Eisenman J, et al: IL-15 has stimulatory activity for the induction of B cell proliferation and differentiation. J Immunol 154:483–490, 1995

    Google Scholar 

  27. 27.

    Leonardo MJ: Fas and the art of lymphocyte maintenance. J Exp Med 183:721–724, 1996

    Google Scholar 

  28. 28.

    Azimi N, Nagai M, Jacobson S, Waldmann T: Interleukin 15 is an essential factor for the persistence of the Tax-specific CD8 cells in HAM/TSP patients. Proc Natl Acad Sci USA 98:14559–14564. 2001

    Google Scholar 

  29. 29.

    Sadlack B, Kuhn R, Schorle H, et al: Development and proliferation of lymphocytes in mice deficient for both interleukins-2 and-4. Eur J Immunol 24:281–284, 1994

    Google Scholar 

  30. 30.

    Willerford DM, Chen J, Ferry, JA, et al: Interleukin-2 receptor ? chain regulates the size and content of the peripheral lymphoid compartment. Immunity 3:521–530, 1995

    Google Scholar 

  31. 31.

    Kennedy MK, Glaccum M, Brown SN, et al: Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med 191:771–780, 2000

    Google Scholar 

  32. 32.

    Lodolce JP, Boone DL, Chai S, et al: IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9:669–676, 1998

    Google Scholar 

  33. 33.

    Chiron Corporation Proleukin. Physicians Desk Reference: 894–897, 1999

  34. 34.

    Shevach EM, Certified Professionals: CD4_ CD25_ Suppressor T cells. J Exp Med 193:F41–F45, 2001

    Google Scholar 

  35. 35.

    Siekevitz M, Feinberg MB, Holbrook N, et al: Activation of interleukin 2 and interleukin 2 receptor (Tac) promoter expression by the transactivator (tat) gene product of human T-cell leukemia virus Type I. Proc Natl Acad Sci USA 84:5389–5393, 1987

    Google Scholar 

  36. 36.

    Azimi N, Brown K, Bamford RN, et al: Human T-cell lymphotropic virus type I Tax protein trans-activates interleukin 15 gene transcription through an NF-κ? site. Proc Natl Acad Sci USA 95:2452–2457, 1998

    Google Scholar 

  37. 37.

    Mariner JM, Lantz V, Waldmann TA, Azimi N: Human T cell lymphotropic virus type I Tax protein activates interleukin 15 receptor alpha gene expression through the action of NF-κ?. J Immunol 166:2602–2609, 2001

    Google Scholar 

  38. 38.

    Phillips KE, Herring B, Wilson LA, et al: IL-2R-directed monoclonal antibodies provide effective therapy in a murine model of? adult T-cell leukemia by a mechanism other than blockade of IL-2/IL-2R_ interaction. Cancer Res 60:6977–6984, 2000

    Google Scholar 

  39. 39.

    Clynes RA, Towers TL, Presta LG, Ravetch JV: Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 6:443–446, 2000

    Google Scholar 

  40. 40.

    Queen C, Schneider WP, Selick HE, et al: A humanized antibody that binds to the interleukin 2 receptor. Proc Natl Acad Sci USA 86:10029–10033, 1989

    Google Scholar 

  41. 41.

    Junghans RP, Waldmann TA, Landolfi NF, et al: Anti-Tac-H, a humanized antibody to the interleukin 2 receptor with new features for immunotherapy in malignant and immune disorders. Cancer Res 50:1495–1502, 1990

    Google Scholar 

  42. 42.

    Vincenti F, Kirkman R, Light S, et al: Interleukin-2-receptor blockade with daclizumab to prevent acute rejection in renal transplantation. Daclizumab Triple Therapy Study Group. New Engl J Med 338:161–165, 1998

    Google Scholar 

  43. 43.

    Nashan B, Moore R, Amlot P, et al: Randomised trial of basiliximab versus placebo for control of acute cellular rejection in renal allograft recepients. CHIB 201 International Study Group. Lancet 350:1193–1198, 1997

    Google Scholar 

  44. 44.

    Bamford RN, DeFilippis AP, Azimi N, et al: The 5′ untranslated region, signal peptide, and the coding sequence of the carboxyl terminus of IL-15 participate in its multifaceted translational control. J Immunol 160:4418–4426, 1998

    Google Scholar 

  45. 45.

    Ogasawara K, Hida S, Azimi N, et al: Requirement for IRF-1 in the microenvironment supporting development of natural killer cells. Nature 391:700–703, 1998

    Google Scholar 

  46. 46.

    Ohteki T, Yoshida H, Matsuyama T, et al: The transcription factor interferon regulatory factor 1 (IRF-1) is important during the maturation of natural killer 1.1+ T cell receptor-alpha/beta+ (NK1+ T) cells, natural killer cells, and intestinal intraepithelial T cells. J Exp Med 187:967–972, 1998

    Google Scholar 

  47. 47.

    Azimi N, Jacobson S, Leist T, Waldmann TA: Involvement of IL-15 in the pathogenesis of human T lymphotropic virus type I-associated myelopathy/tropical spastic paraparesis: Implications for therapy with a monoclonal antibody directed to the IL-2/15R? receptor. J Immunol 163:4064–4072, 1999

    Google Scholar 

  48. 48.

    Ruchatz H, Leung BP, Wei XQ, et al: Soluble IL-15 receptor _-chain administration prevents murine collagen-induced arthritis: A role for IL-15 in development of antigen-induced immunopathology. J Immunol 160:5654–5660, 1998

    Google Scholar 

  49. 49.

    Kim YS, Maslinski W, Zheng XX, et al: Targeting the IL-15 receptor with an antagonist IL-15 mutant/Fcγ2a protein blocks delayed-type hypersensitivity. J. Immunol 160:5742–5748, 1998

    Google Scholar 

  50. 50.

    Tinubu SA, Hakimi J, Kondas JA: Humanized antibody directed to the IL-2 receptor ?-chain prolongs primate cardiac allograft survival. J Immunol 153:4330–4338, 1994

    Google Scholar 

  51. 51.

    Hakimi J, Ha VC, Lin P, et al: Humanized Mik? 1, a humanized antibody to the IL-2 receptor ?-chain that acts synergistically with humanized anti-Tac. J Immunol 151:1075–1085, 1993

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Waldmann, T.A. The IL-2/IL-15 Receptor Systems: Targets for Immunotherapy. J Clin Immunol 22, 51–56 (2002). https://doi.org/10.1023/A:1014416616687

Download citation

  • Interleukin-2
  • interleukin 15
  • receptors
  • monoclonal antibodies