Skip to main content
Log in

Two QTLs Located on Chromosomes 1 and 5 Modulate Different Aspects of the Performance of Mice of the B × D Ty RI Strain Series in the Morris Navigation Task

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

The Morris navigation task is widely used to study spatial abilities in rodents; namely, to analyze the effects of mutations in genetically engineered mice. Although quantitative and Mendelian genetic studies have shown that the variation of these abilities is partly under genetic control, little is known about these genetic factors. In order to analyze the genetic architecture of spatial navigation in mice, a wide genome scan was performed to map the QTLs that control various aspects of the performance, using the RI strain methodology. Latencies to locate the submerged platform across learning sessions and performance to the spatial probe test were analyzed in the 26 strains of the B × D RI series. Both cluster analysis of behavioral measurements and QTL mapping confirmed previous data showing that the escape latencies and the spatial bias rely on two distinct components of the task, controlled by different loci. A QTL on chromosome 1 influenced escape latencies during the four training sessions, whereas another QTL, located on chromosome 5, was shown to control spatial performance at the probe trial and also exhibited epistatic interactions with two other QTLs on chromosomes 2 and 13. The function of these QTLs is examined in the broader context of hippocampal-dependent learning processes and in relation to QTLs already found in similar positions in other behavioral traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Anderson, R., Barnes, J. C., Bliss, T. V., Cain, D. P., Cambon, K., Davies, H. A., Errington, M. L., Fellows, L. A., Gray, R. A., Hoh, T., Stewart, K., Large, C. H., and Higgins, G. A. (1999). Behavioral, physiological and morphological analysis of a line of apolipoprotein E knockout mouse. Neuroscience 91:401–403.

    Google Scholar 

  • Belknap, J. K. (1998). Effect of within-strain sample size on QTL detection and mapping, using recombinant inbred mouse strains. Behavior Genetics 28:29–38.

    Google Scholar 

  • Belknap, J. K., Phillips, T. J., and O'Toole, L. A. (1992). Quantitative trait loci associated with brain weight in the B X D/ Ty recombinant inbred mouse strains. Brain Research Bulletin 29:337–344.

    Google Scholar 

  • Belknap, J. K., Mitchell, S. R., O'Toole, L. A., Helms, M. L., and Crabbe, J. C. (1996). Type I and Type II error rates for quantitative trait loci (QTL) mapping studies using recombinant inbred mouse strains. Behavior Genetics 26:149–160.

    Google Scholar 

  • Berrettini, W. H., Ferraro, T. N., Alexander, R. C., Buchberg, A. M., and Vogel, W. H. (1994). Quantitative trait loci mapping of three loci controlling morphine preference using inbred mouse strains. Nature Genetics 7:54–58.

    Google Scholar 

  • Caldarone, B., Saavedra, C., Tartaglia, K., Wehner, J. M., and Dudek, B. (1997). Quantitative trait loci analysis affecting contextual conditioning in mice. Nature Genetics 17:335–337.

    Google Scholar 

  • Cho, Y., Friedman, E., and Silva, A. J. (1999). Ibotenate lesions of the hippocampus impair spatial learning but not contextual fear conditioning in mice. Behavioral Brain Research 98:77–87.

    Google Scholar 

  • Cho, Y., Giese, K. P., Tanila, A. J., and Eichenbaum, H. (1998). Unstable hippocampal spatial representations in aCaMKII T286A point mutant and CREB Knockout mice. Science 279:867–870.

    Google Scholar 

  • Crabbe, J. C., Belknap, J. K., Mitchell, S. R., and Crawshaw, L. I. (1994). Quantitative trait loci mapping of genes that influence the sensitivity and tolerance to ethanol-induced hypothermia in B 3 D recombinant inbred mice. J. Pharmacology and Experimental Therapeutics 269:184–192.

    Google Scholar 

  • Fanselow, M. S., Kim, J. J., Yipp, J., and De Oca, B. (1994). Differential effects of the N-methyl-D-aspartate antagonist DLe-amino-5-phosphonovalerate on acquisition of fear of auditory and contextual cues. Behavioral Neuroscience 108:235–240.

    Google Scholar 

  • Flint, J., Corley, R., DeFries, J. C., Fulker, D. W., Gray, J. A., Miller, S., and Collins, A. C. (1995). A simple genetic basis for a complex psychological trait in laboratory mice. Science 269:1432–1435.

    Google Scholar 

  • Gallaher, E. J., Jones, G. E., Belknap, J. K., and Crabbe, J. C. (1996). Identification of genetic markers for initial sensitivity and rapid tolerance to ethanol-induced ataxia using quantitative trait locus analysis in B 3 D recombinant inbred mice. J. Pharmacology and Experimental Therapeutics 277:604–612.

    Google Scholar 

  • Gass, P., Wolfer, D. P., Balshun, D., Rudolph, D., Frei, U., Lipp, H. P., and Schutz, G. (1998). Deficits in memory tasks of mice with CREB mutations depend on gene dosage. Learning and Memory 5, 274–288.

    Google Scholar 

  • Gershenfeld, H. K., and Paul, S. M. (1997). Mapping quantitative trait loci for fear-like behaviors in mice. Genomics 46:1–8.

    Google Scholar 

  • Gershenfeld, H. K., Neumann, P. E., Mathis, C., Crawley, J. N., Li, X., and Paul, S. M. (1997). Mapping quantitative trait loci for open-field behavior in mice. Behavior Genetics 27:201–210. Hofstetter, J. R., Mayeda, A. R., Possidente, B., Nurnberger, J. I., Jr. (1995). Quantitative trait loci (QTL) for circadian rythms of locomotor activity in mice. Behavior Genetics 25:545–556.

    Google Scholar 

  • Koyner, J., Demarest, K., McCaughran, J., Cipp, L., and Hitzemann, R. (2000). Identification and time dependence of quantitative trait loci for basal locomotor activity in the B 3 D recombinant inbred series and a B6D2 F2 intercross. Behavior Genetics 30:159–170.

    Google Scholar 

  • Lander, E. S., and Botstein, D. (1989). Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199.

    Google Scholar 

  • Lassalle, J. M. (1996). Neurogenetic bases of cognition: Facts and hypotheses. Behavioral Processes 35:5–18.

    Google Scholar 

  • Lassalle, J.-M., Halley, H., Milhaud, J.-M., and Roullet, P. (1999). Genetic architecture of hippocampal mossy fiber subfields in the B 3 D RI mouse strain series: A preliminary QTL analysis. Behavior Genetics 29:273–282.

    Google Scholar 

  • Lassalle, J. M., Bataille, T., and Halley, H. (2000). Reversible inactivation of the hippocampal mossy fiber synapses in mice impairs spatial learning, but neither consolidation nor memory retrieval, in the Morris navigation task. Neurobiology of Learning and Memory 73:243–257.

    Google Scholar 

  • Logue, S. F., Paylor, R., and Wehner, J., 1997. Hippocampal lesions cause learning deficits in inbred mice in the Morris water maze and conditioned fear task. Behavioral Neuroscience 111: 104–113.

    Google Scholar 

  • Lu, L., Airey, D. C., and Williams, W. (2001). Complex trait analysis of the hippocampus: Mapping and biometric analysis of two novel gene loci with specific effects on hippocampal structure in mice. J. Neuroscience 21:3503–3514.

    Google Scholar 

  • Mathis, C., Neumann, P. E., Gershenfeld, H., Paul, S. M., and Crawley, J. (1995). Genetic analysis of anxiety-related drugs in A 3 B and B 3 A recombinant inbred mouse strains. Behavior Genetics 25:557–568.

    Google Scholar 

  • Mayeda, A. R., and Hofstetter, J. R., (1999). A QTL for the genetic variance in free-running period and level of locomotor activity between inbred strains of mice. Behavior Genetics 29:171–175.

    Google Scholar 

  • Mayeda, A. R., Hofstetter, J. R., Belknap, J. K., and Nurnberger, J. L., Jr. (1996). Hypothetical quantitative trait loci (QTL) for circadian period of locomotor activity in C 3 B recombinant inbred strains of mice. Behavior Genetics 26:505–511.

    Google Scholar 

  • Morris, R., (1984). Development of a water maze procedure for studying spatial learning in the rat. J. Neuroscience Methods 11: 47–60.

    Google Scholar 

  • Owen, E. H., Christensen, S. C., Paylor, R., and Wehner, J. (1997a). Identification of quantitative trait loci involved in contextual and auditory-cued fear conditioning in B 3 D recombinant inbred strains. Behavioral Neuroscience 111:292–300.

    Google Scholar 

  • Owen, E. H., Logue, S. F., Rasmussen, D. L., and Wehner, J. M. (1997b). Assessment of learning by the Morris water task and fear conditioning in inbred mouse strains and F1 hybrids: Implications of genetic background for single gene mutations and quantitative trait loci analyses. Neuroscience 80:1087–1099.

    Google Scholar 

  • Phillips, R. J., and Le Doux, J. E. (1992). Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behavioral Neuroscience 106:274–285.

    Google Scholar 

  • Phillips, T. J., Huson, M. G., and McKinnon, C. S. (1998). Localisation of genes mediating acute and sensitized locomotor responses to cocaine in B X D/Ty recombinant inbred mice. J. Neuroscience 18:3023–3034.

    Google Scholar 

  • Radcliffe, R. A., Lowe, M. V., and Wehner, J. (2000). Confirmation of contextual fear conditioning QTLs by short-term selection. Behavior Genetics 30:183–192.

    Google Scholar 

  • Richter-Levin, G., Thomas, K. L., Hunt, S. P., and Bliss, T. V. P. (1998). Dissociation between genes activated in long-term potentiation and in spatial learning in the rat. Neuroscience Letters 251:41–44.

    Google Scholar 

  • Sago, H., Carlson, E. J., Smith, D. J., Kilbridge, J., Rubin, E. M., Mobley, W. C., Epstein, C. J., and Huang, T. T. (1998). Ts1Cje, a partial trisomy 16 mouse model for Down syndrome, exhibits learning and behavioral abnormalities. Proceedings of the National Academy of Sciences, USA 95:6256–6261.

    Google Scholar 

  • Sakimura, K., Kutsuwada, T., Ito, I., Manabe, T., Takayama, C., Kushiya, E., Yagi, T., Aizawa, S., Inoue, Y., Sugiyama, H., and Mishina M. (1995). Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit. Nature 373:151–155.

    Google Scholar 

  • Schwartz, W. J., and Zimmerman, P. (1990). Circadian time-keeping in BALB/c and C57BL/6 inbred mouse strains. J. Neuroscience 10:3685–3694.

    Google Scholar 

  • Silva, A. J., Giese, K. P., Fedorov, N. B., Frankland, P. W., and Kogan, J. H. (1998). Molecular, cellular, and neuroanatomical substrates of place learning. Neurobiology of Learning and Memory 70:44–61.

    Google Scholar 

  • Smith, S. (1997). Simulating the standard error of the mean. Statistics and experimental design. Biology 461 course. University of Waterloo. http://www.resample.com/pedagogy/Biology/ SEMSIMUL.htm

  • Talbot, C. J., Nicod, A., Cherny, S. S., Fulker, D. W., Collins, A. C., and Flint, J. (1999). High-resolution mapping of quantitative trait loci in outbred mice. Nature Genetics 21:305–308.

    Google Scholar 

  • Tarantino, L. M., McClearn, G. E., Rodriguez, L. A., and Plomin, R. (1998). Confirmation of quantitative trait loci for alcohol preference in mice. Alcoholism: Clinical and Experimental Research 22:1099–1105.

    Google Scholar 

  • Tecott, L. H., Logue, S. F., Wehner, J. M., and Kauer, J. A. (1998). Perturbed dentate gyrus function in serotonin 5-HT2C receptor mutant mice. Proceedings of the National Academy of Sciences, USA 95:15026–15031.

    Google Scholar 

  • Tinker, N. A., and Mather D. E. (1995a). Methods for QTL analysis with progeny replicated in multiple environments. JQTL, http://probe.nalusda.gov:8000/othedocs/jqtl/1

  • Tinker N. A., and Mather D. E. (1995b). MQTL: Software for simplified composite interval mapping of QTL in multiple environments. JQTL, http://probe.nalusda.gov:8000/othedocs/jqtl/1

  • Turri, M. G., Talbot, C. J., Radcliffe, R. A., Wehner, J. A., and Flint, J. (1999). High-resolution mapping of quantitative trait loci for emotionality in selected strains of mice. Mamm. Genome 10: 1098–1101.

    Google Scholar 

  • Upchurch, M., and Wehner, J. M. (1989). Inheritance of spatial learning ability in inbred mice—A classical genetic analysis. Behavioral Neuroscience 103:1251–1258.

    Google Scholar 

  • Valentinuzzi, V. S., Kolker, D. E., Vitaterna, M. H., Shimomura, K., Whiteley, A., Low-Zeddies, S., Turek, F. W., Ferrari, E. A. M., Paylor, R., and Takahashi, J. S. (1998). Automated measurement of mouse freezing behavior and its use for quantitative trait locus analysis of contextual fear conditioning in (BALB/cJ 3 C57BL /6J)F2 mice. Learning and Memory 5:391–403.

    Google Scholar 

  • Wehner, J. M., Radcliffe, R. A., Rosmann, S. T., Christensen, S. C., Rasmussen, D. L., Fulker, D. W., and Wiles, M. (1997). Quantitative trait locus analysis of contextual fear conditioning in mice. Nature Genetics 17:331–334.

    Google Scholar 

  • Wishaw, I. Q., and Tomie, J. A. (1996). Of mice and mazes— Similarities between mice and rats on dry land but not water Mazes. Physiology and Behavior 60:1191–1197.

    Google Scholar 

  • Wolfer, D. P., Mohajeri, H. M., Lipp, H. P., and Schachner, M. (1998). Increased flexibility and selectivity in spatial learning of transgenic mice ectopically expressing the neural cell adhesion molecule L1 in astrocytes. European J. Neuroscience 10: 708–717.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Lassalle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milhaud, JM., Halley, H. & Lassalle, J.M. Two QTLs Located on Chromosomes 1 and 5 Modulate Different Aspects of the Performance of Mice of the B × D Ty RI Strain Series in the Morris Navigation Task. Behav Genet 32, 69–78 (2002). https://doi.org/10.1023/A:1014412029774

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014412029774

Navigation