Skip to main content
Log in

Mechanical effects of increases in the load applied in uniaxial and biaxial tensile testing: Part I. Calf pericardium

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The authors analyzed the mechanical behavior of the calf pericardium employed in the construction of valve leaflets for cardiac bioprostheses. Forty samples of pericardium were subjected to uniaxial tensile testing, 20 as controls and 20 exposed to loads increasing stepwise until rupture, with a return to zero load between each new increment. Another 20 samples were used similarly in biaxial tensile tests involving loads increasing stepwise until rupture, again returning to zero load between steps. The ultimate stresses in the uniaxial study were very similar and were not influenced by the region of pericardial tissue being tested or the increments in load to which the tissue was exposed. The mean stresses at rupture in the stepwise biaxial assays were significantly greater (p<0.01). Using morphological and mechanical criteria for sample selection, it was possible to obtain mathematical fits for the stress/strain relationship in both types of assays, with excellent coefficients of determination (R 2>0.90). In uniaxial tests in which the selection criteria were not applied, the correlation improved as the load increased, a phenomenon that did not occur in the biaxial studies. The values varied throughout the different cycles, adopting exponential forms when the strain was greatest. These variations, which demonstrate that the increase in the energy consumed is a function of the stress applied and of the strain produced, should be good parameters for assessing the changes in the collagen fiber architecture of pericardial tissue subjected to cyclic stress, and may help to detect early failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J. Edwards, S. A. Liversey, I. A. Simpson, J. L. Monra and J. K. Ross, Ann. Thorac. Surg. 60 (1995) S211.

    Google Scholar 

  2. S. C. Cannegieter, F. R. Rosendal and E. Briet, Circulation 89 (1994) 635.

    Google Scholar 

  3. W. Vongpatanasin, L. D. Hillis and R. A. Lange, N. Engl. J. Med. 335 (1996) 407.

    Google Scholar 

  4. F. Hariza, G. Papouin, B. Barratt-Boyes, G. Christie and R. Whitlock, J. Heart Valve Dis. 5 (1996) 35.

    Google Scholar 

  5. D. D. Glower, W. D. White, A. C. Hatton, L. R. Smith, W. G. Young, W. G. Wolfe and J. E. Lowe, J. Cardiovasc. Surg. 107 (1994) 381.

    Google Scholar 

  6. U. Bortolotti, A. Milano, E. Mossuto, E. Mazzaro, G. Thiene and D. Casarotto, J. Heart Valve Dis. 3 (1994) 81.

    Google Scholar 

  7. G. F. O. Tyers, W. R. Jamieson, I. A. Munro, E. Germann, L. H. Burr, R. T. Miyagishima and L. Ling, Ann. Thorac. Surg. 60 (1995) S464.

    Google Scholar 

  8. P. D. Kent, H. D. Tazelaar, W. D. Edwards and T. A. Orszulak, Cardiovasc. Pathol. 7 (1998) 9.

    Google Scholar 

  9. E. Jorge-Herrero, P. Fernandez, M. Gutierrez and J. L. Castillo-Olivares, Biomaterials 12 (1991) 683.

    Google Scholar 

  10. R. J. Levy, J. Heart Valve Dis. 3 (1994) 101.

    Google Scholar 

  11. F. Guerra, U. Bortolotti and G. Thiene, J. Thorac. Cardiovasc. Surg. 99 (1990) 838.

    Google Scholar 

  12. A. I. Munro, W. R. E. Jamieson, G. F. O. Tyers and E. Germann, Ann. Thorac. Surg. 59 (1995) S470.

    Google Scholar 

  13. L. H. Burr, R. E. Jamieson, A. I. Munro, R. T. Miyagishima and E. Germann, ibid. 60 (1995) S264.

    Google Scholar 

  14. E. A. Trowbridge, Crit. Rev. Biocompatibility 5 (1989) 105.

    Google Scholar 

  15. E. A. Talman and D. R. Boughner, J. Heart Valve Dis. 5 (1996) 152.

    Google Scholar 

  16. P. Zioupos, J. C. Barbenel and J. Fisher, J. Biomed. Mater. Res. 28 (1994) 49.

    Google Scholar 

  17. M. Sacks, C. J. Chuong and R. More, ASAIO J. 40 (1994) M632.

    Google Scholar 

  18. J. Mausner and Bahn, in “Epidemiology: An Introductory Text” (W. B. Saunders, Philadelphia 1985).

    Google Scholar 

  19. R. De Castro, A. R. Reis, R. L. Marino, M. A. Marino, A. C. De Castro, W. Rabelo and R. CorrÊa, Ann. Thorac. Surg. 60 (1995) S316.

    Google Scholar 

  20. P. Bloomfield, D. J. Wheathey, R. J. Prescott and D. C. Miller, N. Engl. J. Med. 324 (1991) 573.

    Google Scholar 

  21. G. L. Grunkemeier, W. R. E. Jamieson, D. C. Miller and A. Starr, J. Thorac. Cardiovasc. Surg. 108 (1994) 709.

    Google Scholar 

  22. R. E. Clark, ibid. 66 (1973) 202.

    Google Scholar 

  23. K. Kunzelman, R. P. Cochran and E. Verrier, J. Med. Impl. 3 (1993) 161.

    Google Scholar 

  24. E. A. Trowbridge and C. E. Crofts, Biomaterials 8 (1987) 201.

    Google Scholar 

  25. A. Carrera, J. M. GarcÍa PÁez, J. V. GarcÍa Sestafe, E. Jorge Herrero, J. Salvador, A. Cordon and J. L. Castillo-Olivares, J. Biomed. Mater. Res. 39 (1998) 568.

    Google Scholar 

  26. J. Bustamante, J. Santamaria, O. Infante, P. Flores and A. Juarez, Arch. Inst. Cardiol. Méx. 66 (1996) 229.

    Google Scholar 

  27. A. Carrera, J. M. Garcia PÁez, E. Jorge, I. Millan, R. Navidad, J. V. Garcia Sestafe, I. Candela and J. L. Castillo-Olivares, Biomaterials 14 (1993) 76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

García Páez, J.M., Jorge, E., Rocha, A. et al. Mechanical effects of increases in the load applied in uniaxial and biaxial tensile testing: Part I. Calf pericardium. Journal of Materials Science: Materials in Medicine 13, 381–388 (2002). https://doi.org/10.1023/A:1014388618649

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014388618649

Keywords

Navigation