Skip to main content
Log in

Electroanalytical applications of Prussian Blue and its analogs

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The applications of transition metal hexacyanoferrates in electroanalysis are surveyed. Prussian Blue (ferric hexacyanoferrate) is recognized as the most promising low-potential transducer for hydrogen peroxide reduction among all known systems. The advantages of Prussian Blue over platinum or peroxidase electrodes for hydrogen peroxide detection are discussed. Various types of biosensors based on transition metal hexacyanoferrates and oxidase enzymes are considered. Amperometric biosensors based on Prussian Blue-modified electrodes allow the detection of glucose and glutamate down to 10–7 mol L–1 in the flow-injection mode. The future prospects of Prussian Blue-modified electrodes in analytical chemistry for the monitoring of chemical toxic agents, in clinical diagnostics, and in food control are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miscellanea Berolinensia ad Incrementium Scientiarum, Berlin, 1710, 377.

  2. D. Brown, J. Philos. Trans., 1724, 33, 17.

    Google Scholar 

  3. V. D. Neff, J. Electrochem. Soc., 1978, 128, 886.

    Google Scholar 

  4. J. F. Duncan and P. W. R. Wrigley, J. Chem. Soc., 1963, 1120.

  5. K. Itaya, T. Ataka, and S. Toshima, J. Am. Chem. Soc., 1982, 104, 4767.

    Google Scholar 

  6. J. A. Ibers and N. Davidson, J. Am. Chem. Soc., 1951, 73, 476.

    Google Scholar 

  7. A. A. Karyakin, E. E. Karyakina, and L. Gorton, Talanta, 1996, 43, 1597.

    Google Scholar 

  8. A. A. Karyakin, E. E. Karyakina, and L. Gorton, J. Electroanal. Chem., 1998, 456, 97.

    Google Scholar 

  9. A. K. Jain, R. P. Singh, and C. Bala, J. Chem. Technol. Biotechnol., Chem. Technol., 1984, 34A, 363.

    Google Scholar 

  10. A. K. Jain, R. P. Singh, and C. Bala, Anal. Lett., 1982, 15, 1557.

    Google Scholar 

  11. J. A. Cox and B. K. Das, Anal. Chem., 1985, 57, 239.

    Google Scholar 

  12. D. Engel and E. W. Grabner, Ber. Bunsenges. Phys. Chem., 1985, 89, 982.

    Google Scholar 

  13. V. Krishnan, A. L. Xidis, and V. D. Neff, Anal. Chim. Acta, 1990, 239, 7.

    Google Scholar 

  14. K. N. Thomsen and R. P. Baldwin, Anal. Chem., 1989, 61, 2594.

    Google Scholar 

  15. K. N. Thomsen and R. P. Baldwin, Electroanalysis, 1990, 2, 263.

    Google Scholar 

  16. Y. Tani, H. Eun, and Y. Umezawa, Electrochim. Acta, 1998, 43, 3431.

    Google Scholar 

  17. T. Ikeshoji, J. Electrochem. Soc., 1986, 133, 2108.

    Google Scholar 

  18. N. Kobayashi, Y. Yamamoto, and M. Akashi, Hoken Butsuri, 1998, 33, 323.

    Google Scholar 

  19. M. T. Ganzerli-Valentini, R. Stella, L. Maggi, and G. Ciceri, J. Radioanal. Nucl. Chem., 1987, 114, 105.

    Google Scholar 

  20. L. Johansson, C. Samuelsson, and E. Holm, Radiat. Prot. Dosim., 1999, 81, 147.

    Google Scholar 

  21. S. F. Wang, M. A. Jiang, and X. Y. Zhou, Gaodeng Xuexiao Huaxue Xuebao, 1992, 13, 325.

    Google Scholar 

  22. J. Zhou and E. Wang, Talanta, 1992, 39, 235.

    Google Scholar 

  23. S. Hu, P. Li, and J. Chen, Fenxi Shiyanshi, 1996, 15, 1.

    Google Scholar 

  24. D. R. Shankaran and S. S. Narayanan, Bull. Electrochem., 1998, 14, 267.

    Google Scholar 

  25. W. Lu, G. G. Wallace and A. A. Karyakin, Electroanalysis, 1998, 10, 472.

    Google Scholar 

  26. D. M. Zhou, H. X. Ju, and H. Y. Chen, J. Electroanal. Chem., 1996, 408, 219.

    Google Scholar 

  27. W. Hou and E. Wang, Anal. Chim. Acta, 1992, 257, 275.

    Google Scholar 

  28. J. W. Mo, B. Ogorevc, X. J. Zhang, and B. Pihlar, Electroanalysis, 2000, 12, 48.

    Google Scholar 

  29. C. X. Cai, H. X. Ju, and H. Y. Chen, J. Electroanal. Chem., 1995, 397, 185.

    Google Scholar 

  30. C. X. Cai, H. X. Ju, and H. Y. Chen, Anal. Chim. Acta, 1995, 310, 145.

    Google Scholar 

  31. Z. P. Wang, S. F. Wang, M. Jiang, and X. Y. Zhou, Fenxi-Shiyanshi, 1993, 12, 91.

    Google Scholar 

  32. X. Y. Zhou, S. F. Wang, Z. P. Wang, and M. Jiang, Fresenius' J. Anal. Chem., 1993, 345, 424.

    Google Scholar 

  33. D. R. Shankaran and S. S. Narayanan, Fresenius' J. Anal. Chem., 1999, 365, 663.

    Google Scholar 

  34. G. Vaivars, J. Pitkevics, and A. Lusis, Sens. Actuat. B 1993, B13, 111.

    Google Scholar 

  35. T. McCormac, J. Cassidy, and D. Cameron, Electroanalysis, 1996, 8, 195.

    Google Scholar 

  36. R. Koncki and O. S. Wolfbeis, Anal. Chem., 1998, 70, 2544.

    Google Scholar 

  37. R. Koncki and O. S. Wolfbeis, Sens. Actuat. B, 1998, B51, 355.

    Google Scholar 

  38. W. B. Nowall and W. G. Kuhr, Electroanalysis, 1997, 9, 102.

    Google Scholar 

  39. Y. Wang, J. Huang, C. Zhang, J. Wei, and X. Zhou, Electroanalysis, 1998, 10, 776.

    Google Scholar 

  40. B. Strausak and W. Schoch, in European Patent Application; EP 0136973: European patent application, 1985; Vol. bulletine 85/15.

  41. A. Schwake, B. Ross, K. Cammann, Sens. Actuat. B, 1998, B46, 242.

    Google Scholar 

  42. A. A. Karyakin, O. V. Gitelmacher, and E. E. Karyakina, Anal. Lett., 1994, 27, 2861.

    Google Scholar 

  43. A. A. Karyakin, O. V. Gitelmacher, and E. E. Karyakina, Anal. Chem., 1995, 67, 2419.

    Google Scholar 

  44. Q. J. Chi and S. J. Dong, Anal. Chim. Acta, 1995, 310, 429.

    Google Scholar 

  45. S. A. Jaffari and J. C. Pickup, Biosensors Bioelectronics, 1996, 11, 1167.

    Google Scholar 

  46. S. A. Jaffari and A. P. F. Turner, Biosensors Bioelectronics, 1997, 12, 1.

    Google Scholar 

  47. A. A. Karyakin, E. E. Karyakina, and L. Gorton, Electrochem. Commun., 1999, 1, 78.

    Google Scholar 

  48. K. Itaya, N. Shoji, and I. Uchida, J. Am. Chem. Soc., 1984, 106, 3423.

    Google Scholar 

  49. A. A. Karyakin and E. E. Karyakina, Sens. Actuat. B, 1999, B57, 268.

    Google Scholar 

  50. I. L. Mattos, L. Gorton, T. Ruzgas, and A. A. Karyakin, Analytical Sciences, 2000, 16, 1.

    Google Scholar 

  51. Y. Zhang and G. S. Wilson, J. Electroanal. Chem., 1993, 345, 253.

    Google Scholar 

  52. A. A. Karyakin, E. E. Karyakina, and L. Gorton, Anal. Chem., 2000, 72, 1720.

    Google Scholar 

  53. J. Ruzicka and E. H. Hansen, Flow Injection Analysis; J. Wiley and Sons, New York, Toronto, 1988; Vol. Second.

    Google Scholar 

  54. D. Moscone, D. D'Ottavi, D. Compagnone, G. Palleschi, and A. Amine, Anal. Chem., 2001, 73, 2529.

    Google Scholar 

  55. I. L. Mattos, L. Gorton, T. Laurell, A. Malinauskas, and A. A. Karyakin, Talanta, 2000, 52, 791.

    Google Scholar 

  56. Y. Mishima, J. Motonaka, K. Maruyama, and S. Ikeda, Anal. Chim. Acta, 1998, 358, 291.

    Google Scholar 

  57. M. S. Lin and B. I. Jan, Electroanalysis, 1997, 9, 340.

    Google Scholar 

  58. M. S. Lin, T. F. Tseng, and W. C. Shih, Analyst, 1998, 123, 159.

    Google Scholar 

  59. R. Yang, Z. B. Qian, and J. Q. Deng, J. Electrochem. Soc., 1998, 145, 2231.

    Google Scholar 

  60. G. G. Guilbault, G. J. Lubrano, and D. N. Gray, Anal. Chem., 1973, 45, 2255.

    Google Scholar 

  61. F. W. Scheller, D. Pfeifer, F. Schubert, R. Reneberg, and D. Kirstein, Applications of Enzyme Amperometric Biosensors to Analysis of Real Objects, in Biosensors: fundamental and applications.; Eds. A. P. F. Turner, I. Karube, and J. S. Wilson, Oxford University Press, Oxford, 1987.

    Google Scholar 

  62. M. S. Lin, W. C. Shih, Anal. Chim. Acta, 1999, 381, 183.

    Google Scholar 

  63. S. F. Wang, M. A. Jiang, and X. Y. Zhou, Gaodeng Xuexiao Huaxue Xuebao, 1992, 13, 325.

    Google Scholar 

  64. R. Garjonyte and A. Malinauskas, Sens. Actuat. B, 1999, B56, 85.

    Google Scholar 

  65. X. Zhang, J. Wang, B. Ogorevc, and U. E. Spichiger, Electroanalysis, 1999, 11, 945.

    Google Scholar 

  66. J. Z. Zhang and S. J. Dong, Anal. Lett., 1999, 32, 2925.

    Google Scholar 

  67. J. Wang, X. Zhang, and M. Prakash, Anal. Chim. Acta, 1999, 395, 11.

    Google Scholar 

  68. J. Wang and X. Zhang, Anal. Lett., 1999, 32, 1739.

    Google Scholar 

  69. J. Wang, X. J. Zhang, and M. Prakash, Anal. Chim. Acta, 1999, 395, 11.

    Google Scholar 

  70. S. Milardovic, I. Kruhak, D. Ivekovic, V. Rumenjak, M. Tkalcec, and B. S. Grabaric, Anal. Chim. Acta, 1997, 350, 91.

    Google Scholar 

  71. S. Milardovic, Z. Grabaric, V. Rumenjak, and M. Jukic, Electroanalysis, 2000, 12, 1051.

    Google Scholar 

  72. S. Milardovic, Z. Grabaric, M. Tkalcec, and V. Rumenjak, Journal of Aoac International, 2000, 83, 1212.

    Google Scholar 

  73. N. V. Kulagina, L. Shankar, and A. C. Mickael, Anal. Chem., 1999, 71, 5093.

    Google Scholar 

  74. J. M. Cooper, P. L. Foreman, A. Glidle, T. W. Ling, and D. J. Pritchard, J. Electroanal. Chem., 1995, 388, 143.

    Google Scholar 

  75. S. Cosnier, C. Innocent, L. Allien, S. Poitry, and M. Tsacopoulos, Anal. Chem., 1997, 69, 968.

    Google Scholar 

  76. S. Pan and M. A. Arnold, Talanta, 1996, 43, 1157.

    Google Scholar 

  77. R. Garjonyte and A. Malinauskas, Sens. Actuat. B, 1999, B56, 93.

    Google Scholar 

  78. Y. Mishima, J. Motonaka, K. Maruyama, and S. Ikeda, Anal. Chim. Acta, 1998, 358, 291.

    Google Scholar 

  79. J. M. Zen, H. H. Chung, and A. S. Kumar, Analyst, 2000, 125, 1633.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karyakin, A.A., Karyakina, E.E. Electroanalytical applications of Prussian Blue and its analogs. Russian Chemical Bulletin 50, 1811–1817 (2001). https://doi.org/10.1023/A:1014373811238

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014373811238

Navigation