Skip to main content
Log in

Adequate patient selection for coronary revascularization: an overview of current methods used in daily clinical practice

  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Fischman DL, Leon MB, Baim DS, et al. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent Restenosis Study Investigators. N Engl J Med 1994; 331: 496–501.

    Google Scholar 

  2. Serruys PW, de Jaegere P, Kiemeneij F, et al. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group. N Engl J Med 1994; 331: 489–495.

    Google Scholar 

  3. Topol EJ, Nissen SE. Our preoccupation with coronary luminology. The dissociation between clinical and angio-graphic findings in ischemic heart disease. Circulation 1995; 92: 2333–2342.

    Google Scholar 

  4. Baumgart D, Haude M, Liu F, Ge J, Goerge G, Erbel R. Current concepts of coronary flow reserve for clinical decision making during cardiac catheterization. Am Heart J 1998; 136: 136–149.

    Google Scholar 

  5. Kern MJ, De Bruyne B, Pijls NH. From research to clinical practice: current role of intracoronary physiologically based decision making in the cardiac catheterization laboratory. J Am Coll Cardiol 1997; 30: 613–620.

    Google Scholar 

  6. O'Keefe JH, Jr, Barnhart CS, Bateman TM. Comparison of stress echocardiography and stress myocardial perfusion scintigraphy for diagnosing coronary artery disease and assessing its severity. Am J Cardiol 1995; 75: 25D–34D.

    Google Scholar 

  7. Emanuelsson H. Future challenges to coronary angioplasty: perspectives on intracoronary imaging and physiology. J Int Med 1995; 238: 111–119.

    Google Scholar 

  8. Windecker S, Meier B. Intervention in coronary artery disease. Heart 2000; 83: 481–490.

    Google Scholar 

  9. Windecker S, Maier-Rudolph W, Bonzel T, et al. Interventional cardiology in Europe 1995. Working Group Coronary Circulation of the European Society of Cardiology. Eur Heart J 1999; 20: 484–495.

    Google Scholar 

  10. Scanlon PJ, Faxon DP, Audet AM, et al. ACC AHA guidelines for coronary angiography – A report of the American College of Cardiology American Heart Association Task Force on Practice Guidelines (Committee on Coronary Angiography). J Am Coll Cardiol 1999; 33: 1756–1816.

    Google Scholar 

  11. Berman DS, Germano G, Shaw LJ. The role of nuclear cardiology in clinical decision making. Semin Nucl Med 1999; 29: 280–297.

    Google Scholar 

  12. Fleischmann KE, Hunink MG, Kuntz KM, Douglas PS. Exercise echocardiography or exercise SPECT imaging? A meta-analysis of diagnostic test performance. JAMA 1998; 280: 913–920.

    Google Scholar 

  13. Uren NG, Melin JA, De Bruyne B, Wijns W, Baudhuin T, Camici PG. Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med 1994; 330: 1782–1788.

    Google Scholar 

  14. Zaret BL, Wackers FJ. Nuclear cardiology (1). N Engl J Med 1993; 329: 775–783.

    Google Scholar 

  15. Marwick TH, Nemec JJ, Pashkow FJ, Stewart WJ, Salcedo EE. Accuracy and limitations of exercise echocardiography in a routine clinical setting. J Am Coll Cardiol 1992; 19: 74–81.

    Google Scholar 

  16. Gibbons RJ, Chatterjee K, Daley J, et al. ACC/AHA/ACPASIM guidelines for the management of patients with chronic stable angina: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Patients With Chronic Stable Angina). J Am Coll Cardiol 1999; 33: 2092–2197.

    Google Scholar 

  17. Beller GA, Zaret BL. Contributions of nuclear cardiology to diagnosis and prognosis of patients with coronary artery disease. Circulation 2000; 101: 1465–1478.

    Google Scholar 

  18. Kiat H, Van Train KF, Maddahi J, et al. Development and prospective application of quantitative 2-day stress-rest Tc-99m methoxy isobutyl isonitrile SPECT for the diagnosis of coronary artery disease. Am Heart J 1990; 120: 1255–1266.

    Google Scholar 

  19. Iskander S, Iskandrian AE. Risk assessment using singlephoton emission computed tomographic technetium-99m Sestamibi imaging. J Am Coll Cardiol 1998; 32: 57–62.

    Google Scholar 

  20. Heller GV, Herman SD, Travin MI, Baron JI, Santos-Ocampo C, McClellan JR. Independent prognostic value of intravenous dipyridamole with technetium-99m sestamibi tomographic imaging in predicting cardiac events and cardiac-related hospital admissions. J Am Coll Cardiol 1995; 26: 1202–1208.

    Google Scholar 

  21. Vanzetto G, Ormezzano O, Fagret D, Comet M, Denis B, Machecourt J. Long-term additive prognostic value of thallium-201 myocardial perfusion imaging over clinical and exercise stress test in low to intermediate risk patients – study in 1137 patients with six-year follow-up. Circulation. 1999; 100: 1521–1527.

    Google Scholar 

  22. Kwok JMF, Christian TF, Miller TD, Hodge DO, Gibbons RJ. Identification of severe coronary artery disease in patients with a single abnormal-coronary territory on exercise thallium-201 imaging. J Am Coll Cardiol 2000; 35: 335–344.

    Google Scholar 

  23. Pingitore A, Picano E, Varga A, et al. Prognostic value of pharmacological stress echocardiography in patients with known or suspected coronary artery disease – A prospective, large-scale, multicenter, head-to-head comparison between dipyridamole and dobutamine test. J Am Coll Cardiol 1999; 34: 1769–1777.

    Google Scholar 

  24. Travin MI, Wexler JP. Pharmacological stress testing. Semin Nucl Med 1999; 29: 298–318.

    Google Scholar 

  25. Geleijnse ML, Elhendy A, Fioretti PM, Roelandt J. Dobutamine stress myocardial perfusion imaging. J Am Coll Cardiol 2000; 36: 2017–2027.

    Google Scholar 

  26. Cramer MJ, Verzijlbergen JF, van der Wall EE, et al. Comparison of adenosine and high-dose dipyridamole both combined with low-level exercise stress for 99Tcm-MIBI SPET myocardial perfusion imaging. Nuclear Medicine Communications 1996; 17: 97–104.

    Google Scholar 

  27. Elhendy A, van Domburg RT, Bax JJ, Poldermans D, Sozzi FB, Roelandt JR. Accuracy of dobutamine technetium 99m sestamibi SPECT imaging for the diagnosis of single-vessel coronary artery disease: comparison with echocardiography. Am Heart J 2000; 139: 224–230.

    Google Scholar 

  28. Smart SC, Bhatia A, Hellman R, et al. Dobutamine–atropine stress echocardiography and dipyridamole sestamibi scintigraphy for the detection of coronary artery disease: limitations and concordance. J Am Coll Cardiol 2000; 36: 1265–1273.

    Google Scholar 

  29. Geleijnse ML, Elhendy A, van Domburg RT, et al. Cardiac imaging for risk stratification with dobutamine–atropine stress testing in patients with chest pain: echocardiography, perfusion scintigraphy, or both? Circulation 1997; 96: 137–147.

    Google Scholar 

  30. Marwick T, Willemart B, D'Hondt AM, et al. Selection of the optimal nonexercise stress for the evaluation of ischemic regional myocardial dysfunction and malperfusion. Comparison of dobutamine and adenosine using echocardiography and 99mTc-MIBI single photon emission computed tomography. Circulation 1993; 87: 345–354.

    Google Scholar 

  31. Camici PG. Positron emission tomography and myocardial imaging. Heart 2000; 83: 475–480.

    Google Scholar 

  32. Camici PG, Gropler RJ, Jones T, et al. The impact of myocardial blood flow quantitation with PET on the understanding of cardiac diseases. Eur Heart J 1996; 17: 25–34.

    Google Scholar 

  33. Zir LM, Miller SW, Dinsmore RE, Gilbert JP, Harthorne, JW. Interobserver variability in coronary angiography. Circulation 1976; 53: 627–632.

    Google Scholar 

  34. White CW, Wright CB, Doty DB, et al. Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med 1984; 310: 819–824.

    Google Scholar 

  35. Chamuleau SAJ, Piek JJ, Hanekamp WB, et al. An analogue laser optical disc in comparison with cinefilm for visual analysis of coronary narrowings before and after coronary angioplasty. Int J Card Im 1998; 14: 19–26.

    Google Scholar 

  36. Reiber JH, van der Zwet PM, Koning G, et al. Accuracy and precision of quantitative digital coronary arteriography: observer-, short-, and medium-term variabilities. Cathet Cardiovasc Diagn 1993; 28: 187–198.

    Google Scholar 

  37. Kirkeeide RL, Gould KL, Parsel L. Assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. VII. Validation of coronary flow reserve as a single integrated functional measure of stenosis severity reflecting all its geometric dimensions. J Am Coll Cardiol 1986; 7: 103–113.

    Google Scholar 

  38. Gould KL, Kelley KO, Bolson EL. Experimental validation of quantitative coronary arteriography for determining pressure–flow characteristics of coronary stenosis. Circulation 1982; 66: 930–937.

    Google Scholar 

  39. Wilson RF. Assessment of the human coronary circulation using a Doppler catheter.Am J Cardiol 1991; 67: 44D–56D.

    Google Scholar 

  40. Harrison DG, White CW, Hiratzka LF, et al. The value of lesion cross-sectional area determined by quantitative coronary angiography in assessing the physiologic significance of proximal left anterior descending coronary arterial stenoses. Circulation 1984; 69: 1111–1119.

    Google Scholar 

  41. Goldstein RA, Kirkeeide RL, Demer LL, et al. Relation between geometric dimensions of coronary artery stenoses and myocardial perfusion reserve in man. J Clin Invest 1987; 79: 1473–1478.

    Google Scholar 

  42. Baptista J, Arnese M, Roelandt JR, et al. Quantitative coronary angiography in the estimation of the functional significance of coronary stenosis: correlations with dobutamine–atropine stress test. J Am Coll Cardiol 1994; 23: 1434–1439.

    Google Scholar 

  43. Gurley JC, Nissen SE, Booth DC, DeMaria AN. Influence of operator-and patient-dependent variables on the suitability of automated quantitative coronary arteriography for routine clinical use. J Am Coll Cardiol 1992; 79: 1237–1243.

    Google Scholar 

  44. Di Carli M, Czernin J, Hoh CK, et al. Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation 1995; 91: 1944–1951.

    Google Scholar 

  45. Demer L, Gould K, Goldstein R, et al. Assessment of coronary artery disease severity by positron emission tomography. Comparison with quantitative arteriography in 193 patients. Circulation 1989; 79: 825–835.

    Google Scholar 

  46. Doucette JW, Corl PD, Payne HM, et al. Validation of a Doppler guide wire for intravascular measurement of coronary artery flow velocity. Circulation 1992; 85: 1899–1911.

    Google Scholar 

  47. Pijls NHJ, Van Gelder B, Van der Voort P, et al. Fractional flow reserve. A useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. Circulation 1995; 92: 3183–3193.

    Google Scholar 

  48. Piek JJ, Boersma E, Di Mario C, et al. Angiographical and Doppler flow-derived parameters for assessment of coronary lesion severity and its relation to the results of exercise electrocardiography. Eur Heart J 2000; 21: 466–474.

    Google Scholar 

  49. Tron C, Kern MJ, Donohue TJ, et al. Comparison of quantitative angiographically derived and measured translesion pressure and flow velocity in coronary artery disease. Am J Cardiol 1995; 75: 111–117.

    Google Scholar 

  50. Heller LI, Cates C, Popma J, et al. Intracoronary Doppler assessment of moderate coronary artery disease: comparison with 201Tl imaging and coronary angiography. FACTS Study Group. Circulation 1997; 96: 484–490.

    Google Scholar 

  51. Pijls NHJ, De Bruyne B, Peels K, et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med 1996; 334: 1703–1708.

    Google Scholar 

  52. De Bruyne B, Baudhuin T, Melin JA, et al. Coronary flow reserve calculated from pressure measurements in humans. Validation with positron emission tomography. Circulation 1994; 89: 1013–1022.

    Google Scholar 

  53. De Bruyne B, Pijls NH, Paulus WJ, Vantrimpont PJ, Sys SU, Heyndrickx GR. Transstenotic coronary pressure gradient measurement in humans: in vitro and in vivo evaluation of a new pressure monitoring angioplasty guide wire. J Am Coll Cardiol 1993; 22: 119–126.

    Google Scholar 

  54. Pijls NHJ, van Son JA, Kirkeeide RL, De Bruyne B, Gould KL. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation 1993; 87: 1354–1367.

    Google Scholar 

  55. Wilson RF, Wyche K, Christensen BV, Zimmer S, Laxson DD. Effects of adenosine on human coronary arterial circulation. Circulation 1990; 82: 1595–1606.

    Google Scholar 

  56. De Bruyne B, Pijls NHJ, Wijns W, Bech GJW, Heyndrickx GR. Intracoronary and intravenous (central vs peripheral) administration of ATP and adenosine to induce maximal vasodilation. Circulation 1999;100(Suppl I): 376.

    Google Scholar 

  57. Johnson EL, Yock PG, Hargrave VK, et al. Assessment of severity of coronary stenoses using a Doppler catheter. Validation of a method based on the continuity equation. Circulation 1989; 80: 625–635.

    Google Scholar 

  58. Nakatani S, Yamagishi M, Tamai J, Takaki H, Haze K, Miyatake K. Quantitative assessment of coronary artery stenosis by intravascular Doppler catheter technique. Application of the continuity equation. Circulation 1992; 85: 1786–1791.

    Google Scholar 

  59. Verberne HJ, Piek JJ, van Liebergen RAM, Koch KT, Schroeder-Tanka JM, van Royen EA. Functional assessment of coronary artery stenosis by Doppler derived absolute and relative coronary blood flow velocity reserve in comparison with Tc-99m MIBI SPECT. Heart 1999; 82: 509–514.

    Google Scholar 

  60. Joye JD, Schulman DS, Lasorda D, Farah T, Donohue BC, Reichek N. Intracoronary Doppler guide wire versus stress single-photon emission computed tomographic thallium-201 imaging in assessment of intermediate coronary stenoses. J Am Coll Cardiol 1994; 24: 940–947.

    Google Scholar 

  61. Miller DD, Donohue TJ, Younis LT, et al. Correlation of pharmacological 99mTc-sestamibi myocardial perfusion imaging with poststenotic coronary flow reserve in patients with angiographically intermediate coronary artery stenoses. Circulation 1994; 89: 2150–2160.

    Google Scholar 

  62. Chamuleau SAJ, Meuwissen M, Van Eck-Smit BLF, et al. Fractional flow reserve, absolute and relative coronary blood flow velocity reserve in relation to the results of 99mTc-MIBI single photon emission computed tomography in patients with two-vessel coronary artery disease. J Am Coll Cardiol 2001; 37: 1316–1322.

    Google Scholar 

  63. Kern MJ, Donohue TJ, Aguirre FV, et al. Clinical outcome of deferring angioplasty in patients with normal translesional pressure-flow velocity measurements. J Am Coll Cardiol 1995; 25: 178–187.

    Google Scholar 

  64. Ferrari M, Schnell B, Werner GS, Figulla HR. Safety of deferring angioplasty in patients with normal coronary flow velocity reserve. J Am Coll Cardiol 1999; 33: 82–87.

    Google Scholar 

  65. Chamuleau SAJ, Tio RA, De Cock CC, et al. Intermediate Lesions: Intracoronary Flow Assessment Versus 99mTCMIBI SPECT (ILIAS study); a Dutch multicenter study. Circulation 2000;102(Suppl II): 477.

    Google Scholar 

  66. Pijls NHJ, De Bruyne B. Coronary pressure measurement and fractional flow reserve. Heart 1998; 80: 539–542.

    Google Scholar 

  67. Bech GJW, De Bruyne B, Pijls NHJ, et al. Fractional flow reserve to determine the appropriateness of angioplasty in moderate coronary stenosis: a randomized trial. Circulation 2001; 103: 2928–2934.

    Google Scholar 

  68. Bech GJW, De Bruyne B, Bonnier HJ, et al. Long-term follow-up after deferral of percutaneous transluminal coronary angioplasty of intermediate stenosis on the basis of coronary pressure measurement. J Am Coll Cardiol 1998; 31: 841–847.

    Google Scholar 

  69. Meuwissen M, Chamuleau SAJ, Siebes M, et al. Role of variability in microvascular resistance on fractional flow reserve and coronary blood flow velocity reserve in intermediate lesions. Circulation 2001; 103: 184–187.

    Google Scholar 

  70. Pijls NHJ, De Bruyne B, Van de Vosse F, et al. Simultaneous measurement of fractional and coronary flow reserve by a single 0.014' dual sensor pressure/temperature guidewire. Eur Heart J 2000; 21(snSuppl): 517.

    Google Scholar 

  71. Deychak YA, Segal J, Reiner JS, et al. Doppler guide wire flow-velocity indexes measured distal to coronary stenoses associated with reversible thallium perfusion defects. Am Heart J 1995; 129: 219–227.

    Google Scholar 

  72. Tron C, Donohue TJ, Bach RG, et al. Comparison of pressure-derived fractional flow reserve with poststenotic coronary flow velocity reserve for prediction of stress myocardial perfusion imaging results. Am Heart J 1995; 130: 723–733.

    Google Scholar 

  73. Danzi GB, Pirelli S, Mauri L, et al. Which variable of stenosis severity best describes the significance of an isolated left anterior descending coronary artery lesion? Correlation between quantitative coronary angiography, intracoronary Doppler measurements and high dose dipyridamole echocardiography. J Am Coll Cardiol 1998; 31: 526–533.

    Google Scholar 

  74. De Bruyne B, Bartunek J, Sys SU, Heyndrickx GR. Relation between myocardial fractional flow reserve calculated from coronary pressure measurements and exercise-induced myocardial ischemia. Circulation 1995; 92: 39–46.

    Google Scholar 

  75. Bartunek J, Van Schuerbeeck E, de Bruyne B. Comparison of exercise electrocardiography and dobutamine echocardiography with invasively assessed myocardial fractional flow reserve in evaluation of severity of coronary arterial narrowing. Am J Cardiol 1997; 79: 478–481.

    Google Scholar 

  76. Abe M, Tomiyama H, Yoshida H, Doba N. Diastolic fractional flow reserve to assess the functional severity of moderate coronary artery stenoses – Comparison with fractional flow reserve and coronary flow velocity reserve. Circulation 2000; 102: 2365–2370.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chamuleau, S.A., van Eck-Smit, B.L., Meuwissen, M. et al. Adequate patient selection for coronary revascularization: an overview of current methods used in daily clinical practice. Int J Cardiovasc Imaging 18, 5–15 (2002). https://doi.org/10.1023/A:1014372125457

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014372125457

Navigation