Journal of Porous Materials

, Volume 9, Issue 1, pp 49–56 | Cite as

In Situ Formation of a Novel Nanocomposite Structure Based on MCM-41 and Polyethylene

  • J. He
  • X. Duan
  • D.G. Evans
  • R.F. Howe


M41S materials are prepared by in situ assembly of inorganic precursors and organic template and can be viewed as nanocomposites of the siliceous phase and organic surfactant. Calcination of these precursors gives the M41S materials that have been used to prepare novel nanocomposite structures, in which the organic phase inside the nano-sized pores is isolated by the nano-sized inorganic pore walls. The nanocomposite structures can be formed by in situ polymerization of monomers inside the channels. Polymerization of ethylene takes place inside the nano-sized pores, producing the desired nanocomposite structure. The resulting polyethylene was found to be a mixture of crystalline and amorphous phases.

nanocomposite in situ formation M41S polyethylene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B.M. Novak, Adv. Mater. 5(6), 422 (1993).Google Scholar
  2. 2.
    Z.H. Huang and K.Y. Qiu, Acta Polymerica Sinica 4, 434 (1997).Google Scholar
  3. 3.
    R. Schollhorn, Chem. Mater. 8, 1747 (1996).Google Scholar
  4. 4.
    Y. Chen, X.Y. Wang, Z.M. Gao, X.G. Zhu, and Z.N. Qi, Acta Polymerica Sinica 1, 73 (1997).Google Scholar
  5. 5.
    J.S. Beck, C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Achmitt, C.T-W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, and J.L. Schlenker, J. Am. Chem. Soc. 114, 10834 (1992).Google Scholar
  6. 6.
    J. He, X. Duan, and C.Y. Li, Mat. Chem. Phys. 71, 221 (2001).Google Scholar
  7. 7.
    D.D. Eley, C.H. Rochester, and M.S. Scurrell. Proc. R. Lond. A. 329, 361 (1972).Google Scholar
  8. 8.
    H.W. Siesler and K. Holland-Moritz, Infrared and Raman Spectroscopy of Polymers (Marcel Dekker. New York, 1980).Google Scholar
  9. 9.
    D.I. Bower and W.F. Maddams, The Vibrational Spectroscopy of Polymers (Cambridge University Press, Cambridge, 1989).Google Scholar
  10. 10.
    F. Rull, A.C. Prieto, and J.M. Casado, J. Raman Spectrosc. 24, 545 (1993).Google Scholar
  11. 11.
    J.A. Marqusee and K.A. Dill, Macromolecules 19, 2420 (1986).Google Scholar
  12. 12.
    J.A. Marqusee, Macromolecules 22, 472 (1989).Google Scholar
  13. 13.
    G.R. Strobl and W. Hagedorn, J. Polym. Sci., Polym. Phys. Ed. 16, 285 (1978).Google Scholar
  14. 14.
    K. Tashiro, S. Sasaki, and M. Kobayashi, Macromolecules 29, 7460 (1996).Google Scholar
  15. 15.
    Y. Chao, M. Kobayashi, and H. Tadokoro, Polym. Prepr. Jpn. 30, 1842 (1986).Google Scholar
  16. 16.
    W.L. Eart and D.L. Varderhart, Macromolecules 12, 762 (1979).Google Scholar
  17. 17.
    Q. Chen, T. Yamada, H. Kurosu, I. Ando, T. Shioni, and Y. Doi, J. Poly. Sci., Part B: Poly. Phys. 30, 591 (1992).Google Scholar
  18. 18.
    D.L. Vanderhart and F. Khoury, Polymer 25, 1589 (1984).Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • J. He
    • 1
  • X. Duan
    • 1
  • D.G. Evans
    • 1
  • R.F. Howe
    • 2
  1. 1.The Key Laboratory of Science and Technology of Controllable Chemical ReactionsBeijing University of Chemical Technology, Ministry of EducationBeijingPeople's Republic of China
  2. 2.School of ChemistryThe University of New South WalesSydneyAustralia

Personalised recommendations