Skip to main content
Log in

Kinetic Aspect of Thermal Decomposition of Natural Phosphate and its Kerogen. Influence of heating rate and mineral matter

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The natural phosphate and its demineralization products from Moroccan deposit were pyrolysed in a thermogravimetric analyser (TG) to examine the influence of the heating rate and mineral matter on their thermal decomposition. The heating rates investigated in the TG were 5–100°C min−1 to final temperature of 1200°C. The integral method was used in the analysis of the TG to determine the kinetic parameters. It has been found that for the natural phosphate and corresponding kerogen analysed in the TG, the increase of the heating rate shifts the maximum rate loss to higher temperature. A first order reaction was found to be adequate for pyrolysis in the range 150–600°C which was attributed to kerogen decomposition. In addition, the results indicate that the removal of mineral matter affected the kinetic parameters found for kerogen in the natural phosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ottaway, Fuel, 61 (1982) 713.

    Article  CAS  Google Scholar 

  2. P. Ghetti, U. Robertis, S. D'antone, M. Villani and E. Chiellini, Fuel, 1985 (64) 950.

    Article  CAS  Google Scholar 

  3. A. De Koranyi, Thermochim. Acta, 110 (1987) 525.

    Google Scholar 

  4. B. R. Stanmove, Fuel, 70 (1991) 1485.

    Article  Google Scholar 

  5. M. J. M. Guillena, A. L. Solano and S. M. de Lecea, Fuel, 71 (1992) 579.

    Article  Google Scholar 

  6. R. W. Thring, E. Chornet and B. R. Overend, Fuel, 72 (1993) 579.

    Article  Google Scholar 

  7. J. M.J. Mateos, L. C. Quintero and C. Rial, Fuel, 75 (1996) 1691.

    Article  Google Scholar 

  8. D. Skala, H. Kopsch, M. Sokic, H. J. Neumann and J. A. Jovanovic, Fuel, 66 (1987) 1185.

    Article  CAS  Google Scholar 

  9. C. J. Keattch and D. Dollimore, An introduction to thermogravimetry,2nd, Heyden & Sons Ltd, London 1975.

    Google Scholar 

  10. V. T. Ciuryla, R. F. Weimer, D. A. Bivans and S. A. Motika, Fuel, 58 (1979) 748.

    Article  CAS  Google Scholar 

  11. M. S. McCown and D. P. Harrison, Fuel, 61 (1982) 1149.

    Article  CAS  Google Scholar 

  12. H. Yinnon and D. R. Uhlmann, J. Non-crystalline Solids, 54 (1983) 253.

    Article  CAS  Google Scholar 

  13. N. P. Bansal, A. J. Bruce, R. H. Doremus and C. T. Moynihan, J. Non-crystalline Solids, 70 (1985) 379.

    Article  CAS  Google Scholar 

  14. J. H. Campbell, G. H. Koskinas, and N. D. Stout, Fuel, 57 (1978) 372.

    Article  CAS  Google Scholar 

  15. J. P. Elder and M. B. Harris, Fuel, 63 (1984) 262.

    Article  CAS  Google Scholar 

  16. R. A. Haddadin and K. M. Tawarah, Fuel, 95 (1980) 539.

    Article  Google Scholar 

  17. P. F. V. Williams, Fuel, 74 (1985) 932.

    Google Scholar 

  18. A. V. Coats and J. P. Redfern, Nature, 201 (1964) 68.

    Article  CAS  Google Scholar 

  19. M. Zayad, M. Khaddor and M. Halim, Fuel, 72 (1993) 655.

    Article  Google Scholar 

  20. S. Bebalioullhaj, Thesis, University of Orleans, France 1989.

    Google Scholar 

  21. M. A. Donald, J. Chem. Tech. Biothechnol., 35 (1985) 145.

    Article  Google Scholar 

  22. B. Durand, G. Nicise, in: B. Durand (Ed.), Kerogen, Edition Technip, Paris 1980, p. 35.

    Google Scholar 

  23. R. A. Haddadin and F. A. Mizyed, Ind. Eng. Chem. Proc. Des. Dev., 13 (1974) 332.

    Article  CAS  Google Scholar 

  24. E. A. Drescher, C. A. Bassil and E. J. Rolinski, in: T. N. Veziroglu (Ed.), Alternative Energy Sources V, Part D: Biomass/hydrocarbons/hydrogen, Elsevier, Amsterdam 1983.

    Google Scholar 

  25. L. Ballice, M. Yüksel, M. Saglam, H. Schulz and C. Hanoglu, Fuel, 74 (1995) 1618.

    Article  CAS  Google Scholar 

  26. K. Ceylan, H. Haraca and Y. Önal, Fuel, 78 (1999) 1109.

    Article  CAS  Google Scholar 

  27. M. G. Torrente and M. A. Galan, Fuel, 80 (2001) 327.

    Article  CAS  Google Scholar 

  28. B. Horsfield and A. G. Douglas, Geochem. Cosmochim. Acta, 44 (1981) 1119.

    Article  Google Scholar 

  29. H. J. Dembicki, Org. Geochem., 18 (1992) 531.

    Article  CAS  Google Scholar 

  30. P. A. Morgan, S. D. Robertson and J. F. Unsworth, Fuel, 66 (1987) 210.

    Article  CAS  Google Scholar 

  31. I. M. K. Ismail and P.L. Walker, Fuel, 68 (1989) 1456.

    Article  CAS  Google Scholar 

  32. P. T. Williams and N. Ahmad, Fuel, 78 (1999) 653.

    Article  CAS  Google Scholar 

  33. C. H. Arnold, Effect of heating rate on the pyrolysis of oil shale, Proc. on Symp. in Industrial and Laboratory Pyrolysis, Division of Petroleum Chemistry, 169th ACS Meeting, 1975, p. 28.

  34. D. S. Thakur and H. E. Nutall, Ind. Eng. Chem. Res., 26 (1987) 1351.

    Article  CAS  Google Scholar 

  35. A. Y. Derrall and C. Arnold, Thermochim Acta, 17 (1976) 165.

    Article  Google Scholar 

  36. D. Skala, H. Kopsch, M. Sokic, H. J. Neumann and J. A. Jovanovic, Fuel, 69 (1990) 490.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Benchanâa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aouad, A., Bilali, L., Benchanâa, M. et al. Kinetic Aspect of Thermal Decomposition of Natural Phosphate and its Kerogen. Influence of heating rate and mineral matter. Journal of Thermal Analysis and Calorimetry 67, 733–743 (2002). https://doi.org/10.1023/A:1014329526885

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014329526885

Navigation