Skip to main content
Log in

Oxygen Diffusion in Orthopyroxene. TG study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Oxygen partial pressure is supposed, by analogy with olivines, to influence the kinetics of the Fe-Mg exchange reaction in orthopyroxene. It has been demonstrated for olivines that the Fe−Mg interdiffusion coefficient is dependent on P(O2), according to D Fe−MgP(O2)∼1/6 [1−3].

By means of thermogravimetric analyses performed at different P(O2) on orthopyroxene grains from a volcanic rock it was possible to detect a certain degree of non-stoichiometry which is function of P(O2).Oxygen moves into or out of the orthopyroxene lattice in response to a compositional gradient. Therefore, in orthopyroxene too, the Fe/Mg interdiffusion and hence the kinetics of the Fe−Mg intracrystalline exchange should be affected by P(O2). The oxygen chemical diffusion coefficients at P(O2)∼5⋅10−19atm were calculated at ∼400, 500 and 600°C.

It was also verified on the orthopyroxene from the TPK-30F granulite that, at the operating conditions normally used for single-crystal annealing experiments, oxygen quickly responds to a chemical potential gradient in order to maintain the system in equilibrium conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. K. Buening and P. R. Buseck, J. Geophys. Res., 78 (1973) 6852.

    Article  CAS  Google Scholar 

  2. A. Nakamura and H. Schmalzried, Phys. Chem. Minerals, 10 (1983) 27.

    Article  CAS  Google Scholar 

  3. A. Nakamura and H. Schmalzried, Ber. Bunsenges. Phys. Chem., 88 (1984) 140.

    CAS  Google Scholar 

  4. M. Zema, M. C. Domeneghetti and V. Tazzoli, Am. Mineral., 84 (1999) 1895.

    CAS  Google Scholar 

  5. M. Stimpfl, J. Ganguly and G. M. Molin, Contrib. Mineral. Petrol., 136 (1999) 297.

    Article  CAS  Google Scholar 

  6. J. Ganguly and V. Tazzoli, Am. Mineral., 79 (1994) 930.

    CAS  Google Scholar 

  7. H. Kroll, T. Lueder, H. Schlenz, A. Kirfel and T. Vad, Eur. J. Mineral., 9 (1997) 705.

    CAS  Google Scholar 

  8. J. Ganguly, Mg-Fe order-disorder in ferromagnesian silicates II. in ‘Thermodynamics: Kinetics and Geological Applications (Advances Physical Geochemistry 2)’, Ed. S. K. Saxena, Springer, Berlin 1982, p. 58.

    Google Scholar 

  9. M. Zema, M. C. Domeneghetti, G. M. Molin and V. Tazzoli, Meteor. Planet. Sci., 32 (1997) 855.

    Article  CAS  Google Scholar 

  10. G. Will and G. Nover, Phys. Chem. Minerals, 4 (1979) 199.

    Article  CAS  Google Scholar 

  11. G. Ottonello, F. Princivalle and A. Della Giusta, Phys. Chem. Minerals, 17 (1990) 301.

    Article  CAS  Google Scholar 

  12. L. S. Hollister, Can. Mineral., 20 (1982) 319.

    CAS  Google Scholar 

  13. H. Dünwald and C. Wagner, Z. Phys. Chemie, B24 (1934) 53.

    Google Scholar 

  14. E. A. Gries, J. Am. Ceramic Soc., 46 (1963) 374.

    Article  Google Scholar 

  15. J. S. Huebner and D. E. Voigt, Am. Mineral., 73 (1988) 1235.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zema, M., Ghigna, P., Domeneghetti, M.C. et al. Oxygen Diffusion in Orthopyroxene. TG study. Journal of Thermal Analysis and Calorimetry 67, 713–720 (2002). https://doi.org/10.1023/A:1014325425976

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014325425976

Navigation