Skip to main content
Log in

Effect of Dithiol Chelating Agents on [3H]MK-801 and [3H]Glutamate Binding to Synaptic Plasma Membranes

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

2,3-Dimercaptopropanol (BAL- British Anti-Lewesite) is a dithiol chelating agent used for the treatment of heavy metal poisoning, however, BAL can produce neurotoxic effects in a variety of situations. Based on the low therapeutic efficiency of BAL other dithiols were developed and DMSA (meso-2,3-dimercaptosuccinic acid) and DMPS (2,3-dimercaptopropane-1-sulfonic acid) are becoming used for treatments of humans exposed to heavy metals. In the present investigation the effect of dithiols in the glutamatergic system was examined. The results showed that BAL inhibited [3H]MK-801 and [3H]glutamate binding in a concentration-dependent manner. At 100 μM BAL and DMSA caused a significantly inhibition of [3H]MK-801 binding to brain membranes (p < 0.05 by Duncan's multiple range test). BAL at 100 μM caused an inhibition of 40% on [3H]glutamate binding. DMPS and DMSA had no significant effect on [3H]glutamate binding. Dithiotreitol (DTT), abolished the inhibitory effect of BAL on [3H]MK-801 binding. The protection exerted by DTT suggests that BAL inhibit [3H]MK-801 binding by interacting with cysteinyl residues that are important for redox modulation of receptor responses. ZnCl2 inhibited [3H]glutamate and [3H]MK-801 binding to brain synaptic membrane; nevertheless, the inhibitory effect was slight more accentuated for [3H]MK-801 than [3H]glutamate binding (p < 0.05). The inhibition caused by 10 μM ZnCl2 on [3H]MK-801 binding was attenuated by BAL. The findings present in this study may provide the evidence that BAL affect the glutamatergic system and these effects can contributed to explain, at least in part, why BAL, in contrast to DMPS and DMSA is neurotoxic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Kosnett, M. J. 1992. Unanswered questions in metal chelation. Clinical Toxicology 30:529–547.

    Google Scholar 

  2. Kazantzis, G. 1986. Diagnosis and treatment of metal poisoning-general aspects. In: Handbook on the Toxicology of Metals. Eds Friberg, L. Nordberg, G. F. & Vouk, V. B., 309–311. Amsterdam, Elsevier.

    Google Scholar 

  3. Klaassen, C. D. 1990. Heavy metals and heavy-metals antagonists. In: The Pharmacological Basis of Therapeutics, eds Gilman, A. G.; Rall, T. W; Nies, A. S. & Taylor, P. 1592–1614. New York: Pergamon Press.

    Google Scholar 

  4. Singer, A. J., Mofenson, H. C., Caraccio, T. R., and Ilasi, J. 1994. Mercuric chloride poisoning due to ingestion of a stool fixative. J. Toxicol. Clin. Toxicol. 32:577–582.

    Google Scholar 

  5. Schwartz, J. G., Snider, T. E., and Montiel, M. M. 1992. Toxicity of a family from vacuumed mercury. Am. J. Emerg. Med. 10:258–261.

    Google Scholar 

  6. Aposhian, H. V., Maiorino, R. M., Gonzales-Ramirez, D., Zuniga-Charles, M., Xu, Z., Hurbult, K. M., Jnco-Munoz, J., Dart, R. C., and Aposhian, M. M. 1995. Mobilization of heavy metals by newer, therapeutically useful chelating agents. Toxicology 97:23–28.

    Google Scholar 

  7. Aaseth, J. 1983. Recent advance in the therapy of metal poisonings with chelating agents. Human Toxicology 2:257–272.

    Google Scholar 

  8. Emanuelli, T., Rocha, J. B. T., Pereira, M. E., Porciuncula, L. O., Morsch, V. M., Martins, A. F., and Souza, D. O. 1996. Effect of mercuric chloride intoxication and dimercaprol treatment on aminolevulinate dehydratase from brain, liver and kidney of adult mice. Pharmacol. Toxicol. 79:138–143.

    Google Scholar 

  9. Pepin, J., Milord, F., Khonde, N., Niyonsenga, T., Loko, L., Mpia, B., and Dewals, P. 1995. Risk-factors for encephalopathy and mortality during melarsoprol treatment of Trypanosoma-Brucel-Gambiense sleeping sickness. Transactions of the Royal Society of Tropical Medicine and Hygiene 89:92–97.

    Google Scholar 

  10. Jennings, F. W., Chauvioro, G., Viodo, C., and Murray, M. 1996. Topical chemotherapy for experimental African trypanosomiasis with cerebral involvement: The use of melarsoprol combined with the 5-nitroimidazole, magazol. Tropical Medicine & International Health 1:363–366.

    Google Scholar 

  11. Jennings, F. W., Atouguia, J. M., and Murray, M. 1996. Topical chemotherapy for experimental murine African CNS-trypanosomiasis: The successful use of the arsenical, melarsoprol combined with the 5-nitroimidazole, fexinidazole or MK-436. Tropical Medicine & International Health 1:590–598.

    Google Scholar 

  12. Madonia, P. and Pallazzoadriano, M. 1965. Eccitazione centrale da molecole a strutura tiolica. Bollettino della Societa Italiana di Biologia Sperimentale. 6:295–297.

    Google Scholar 

  13. Nogueira, C. W., Soares, F. A., Bolzan, R. C., Jacques-Silva, M. C., Souza, D. O., and Rocha, J. B. T. 2000. Investigations into the mechanism of 2,3-dimercaptopropanol neurotoxicity. Neurochem. Res. 25:1553–1558.

    Google Scholar 

  14. Aaseth, J., Jacobensem, D., Andersen, O., and Wickstrom, E. 1995. Treatment of mercury and lead poisoning with dimercaptosuccinic acid and sodium dimercaptopropanosulfate. Analyst. 120:853–854.

    Google Scholar 

  15. Aposhian, H. V., Carter, D. E., Hoover, T. D., Hsu, C. A., Maiorino, R. M., and Stine, E. 1984. DMSA, DMPS and DMPA as arsenic antidotes. Fundam. Appl. Toxicol. 4:S58–S70.

    Google Scholar 

  16. Aposhian, H. V., Maiorino, R. M., Rivera, M., Bruce, D. C., Dart, R. C., Hurlbut, K. M., Levine, D. J., Zheng, W., Quintus, F., Carter, D. and Aposhian, M. M. 1992. Human studies with the chelating agents DMPS and DMSA. Clinical Toxicology 30:505–528.

    Google Scholar 

  17. Aposhian, M. M., Maiorino, R. M., Zhaofa, X., and Aposhian, H. V. 1996. Sodium 2,3-dimercapto-1-propanesulfonate (DMPS) treatment does not redistribute lead or mercury to the brain of rats. Toxicology 109:49–55.

    Google Scholar 

  18. Lipton, S. A. and Rosenberg, P. A. 1994. Excitatory amino acids as a final commom pathway for neurologic desorders. New. Eng. J. Med. 330:613–622.

    Google Scholar 

  19. Foster, A. C. and Fagg, G. E. 1987. Taking apart NMDA receptors. Nature 329:395–396.

    Google Scholar 

  20. Meldrum, B. and Garthwaite, J. 1992. Excitatory amino acid neurotoxicity and neurodegenerative disease. TIPS-The Pharmacology of Excitatory Amino Acids: A Special Report 54–62.

  21. Rothman, S. M. and Olney, J. W. 1986. Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann. Neurol. 19:105–111.

    Google Scholar 

  22. Obrenovitch, T. P., Urenjak, J., Zilkha, E., and Jay, T. M. 2000. Excitotoxicity in neurological disorders-the glutamate paradox. Int. J. Devi. Neuroscience 18:281–287.

    Google Scholar 

  23. Aizenman, E., Lipton, S. A., and Loring, R. H. 1989. Selective modulation of NMDA responses by reduction and oxidation. Neuron. 2:257–263.

    Google Scholar 

  24. Reynolds, I. J., Rush, E. A., and Aizenman, E. 1990. Reduction of NMDA receptors with dithiotreitol increases [3H]MK-801 binding and NMDA-induced Ca2+ fluxes. Br. J. Pharmacol. 101:178–182.

    Google Scholar 

  25. Sullivan, J. M., Traynelis, S. F., Chen, H. S., Escobar, W., Heinemann, S. F., and Lipton, S. A. 1994. Identification of two cysteine residues that are required for redox modulation of the NMDA subtype of glutamate receptor. Neuron. 13:929–936.

    Google Scholar 

  26. Ogita, K., Enomoto, R., Nakahara, F., Ishitsubo, N., and Yoneda, Y. 1995. A possible role of glutathione as an endogenous agonist at the N-methyl-D-Aspartate recognition domain in rat brain. J. Neuroch. 64:1088–1096.

    Google Scholar 

  27. Jones, D. H. and Matus, A. I. 1974. Isolation of synaptic plasma membrane from brain by combined flotation-sedimentation density gradient centrifugation. Biochim. Biophys. Acta. 356:276–287.

    Google Scholar 

  28. Nogueira, C. W., Rotta, L. N., Perry, M. L., Perry, M. L., Souza, D. O., and Rocha, J. B. T. 2001. Diphenyl diselenide and diphenyl ditelluride affect the rat glutamatergic system in vitro and in vivo. Brain Research 906:157–163.

    Google Scholar 

  29. Lowry, H. O., Rosenbrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  30. Emanuelli, T., Rocha, J. B. T., Pereira, M. E., Souza, D. O. G., and Beber, F. A. 1998. Aminolevulinate dehydratase inhibition by 2,3-dimercaptopropanol is mediated by chelation of zinc from a site involved in maintaining cysteinyl residues in a reduced state. Pharmacology & Toxicology 83:95–103.

    Google Scholar 

  31. Westbrook, L. G. and Mayer, M. L. 1987. Micromolar concentrations of Zn2+ antagonize NMDA and GABA responses of hippocampal neurons. Nature 328:640–643.

    Google Scholar 

  32. Aizenman, E., Lipton, S. A., and Loring, R. H. 1989. Selective modulation of NMDA responses by reduction and oxidation. Neuron. 2:1257–1263.

    Google Scholar 

  33. Lazarewicz, J. W., Wroblewski, J. T., Palmer, M. E., and Costa, E. 1989. Reduction of disulfide bonds activates NMDA-sensitive glutamate receptors in primary cultures of cerebellar granule cells. Neurosci. Res. Comm. 4:91–97.

    Google Scholar 

  34. Levy, D. I., Sucher, N. J., and Lipton, S. A. 1990. Redox modulation of NMDA receptor-mediated toxicity in mammalian central neurons. Neurosci. Lett. 110:291–296.

    Google Scholar 

  35. Vitarella, D., Mullaney, K. J., Albrecht, J., Kimbelberg, H. K., and Aschner, M. 1997. Stimulation of D-aspartate efflux by mercuric chloride from rat primary astrocyte cultures. Dev. Brain Res. 75:261–268.

    Google Scholar 

  36. Albrecht, J., Talbot, M., Kimelberg, H. K., and Aschner, M. 1993. The role of sulphydryl groups and calcium in the mercuric chloride-induced inhibition of glutamate uptake in rat primary astrocyte cultures. Brain Res. 607:249–254.

    Google Scholar 

  37. Frederickson, C. J. 1989. Neurobiology of zinc and zinc-containing neurons. Int. Rev. Neurobiol. 131:145.

    Google Scholar 

  38. Choi, D. W. and Koh, J. Y. 1998. Zinc and brain injury. Annu. Rev. Neurosci. 21:347–375.

    Google Scholar 

  39. Peters, S., Koh, J., and Choi, D. W. 1987. Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neurons. Science 236:589–593.

    Google Scholar 

  40. Koh, J. Y. and Choi, D. W. 1988. Zinc alters excitatory amino acid neurotoxicity on cortical neurons. J. Neurosci. 8:2164–2171.

    Google Scholar 

  41. Koh, J. Y., Suh, S. W., Gwag, B. J., He, Y. Y., Hsu, C. Y., and Choi, D. W. 1996. The role of zinc in selective neuronal death after transient global cerebral ischemia. Science 272:1013–1016.

    Google Scholar 

  42. Nogueira C. W., Rotta, L. N., Tavares, R. G., Souza, D. O., and Rocha, J. B. T. 2001. BAL modulates glutamate transport in synaptosomes and synaptic vesicles from rat brain. NeuroReport 12:511–514.

    Google Scholar 

  43. Andersen, O. 1989. Oral cadmium exposure in mice: Toxicikinetics and efficiency of chelating agents. CRC Crit. Rev. Toxicol. 20:83–112.

    Google Scholar 

  44. Aposhian, H. V. and Aposhian, M. M. 1990. Meso-2,3-dimercaptosuccinic acid. Chemical, pharmacological and toxicological properties of an orally effective metal chelation agent. Annu. Rev. Pharmacol. Toxicology 30:279–306.

    Google Scholar 

  45. Endo, T. and Sakata, M. 1995. Effects of sulfhydryl compounds on the accumulation, removal and cytotoxicity of inorganic mercury by primary cultures of rat renal cortical epithelial cells. Pharmacology & Toxicology 76:190–195.

    Google Scholar 

  46. Kim, Y. H., Kim, E. Y., Gwag, B. J., Sohn, S., and Koh, J. Y. 1999. Zinc-induced cortical neuronal death with features of apoptosis and necrosis: Mediation by free radicals. Neuroscience 89:175–182.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nogueira, C.W., Rocha, J.B.T. & Souza, D.O. Effect of Dithiol Chelating Agents on [3H]MK-801 and [3H]Glutamate Binding to Synaptic Plasma Membranes. Neurochem Res 26, 1305–1310 (2001). https://doi.org/10.1023/A:1014297401088

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014297401088

Navigation