Skip to main content
Log in

A Field Theory Description of Constrained Energy-Dissipation Processes

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We give a field theory description of dissipation processes constrained by a high-symmetry group. The formalism is presented in the example of the multiple-hadron production processes, where the transition to the thermodynamic equilibrium results from the kinetic energy of colliding particles dissipating into hadron masses. The dynamics of these processes are restricted because the constraints responsible for the color charge confinement must be taken into account. We develop a more general S-matrix formulation of the thermodynamics of nonequilibrium dissipative processes and find a necessary and sufficient condition for the validity of this description; this condition is similar to the correlation relaxation condition, which, according to Bogoliubov, must apply as the system approaches equilibrium. This situation must physically occur in processes with an extremely high multiplicity, at least if the hadron mass is nonzero. We also describe a new strong-coupling perturbation scheme, which is useful for taking symmetry restrictions on the dynamics of dissipation processes into account. We review the literature devoted to this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order Through Fluctuations, Wiley, New York (1977).

    Google Scholar 

  2. P. Caruthers and F. Zachariasen, Phys. Rev. D, 13, 950 (1986); P. Carruthers and F. Zachariasen, Rev. Mod. Phys., 55, 245 (1983).

    Google Scholar 

  3. J. Manjavidze, Part. Nucl., 30, 124 (1999).

    Google Scholar 

  4. E. Wigner, Phys. Rev., 40, 749 (1932); K. Hisimi, Proc. Phys.Math. Soc. Japan, 23, 264 (1940); R. J. Glauber, Phys. Rev. Lett., 10, 84 (1963); E. C. G. Sudarshan, Phys. Rev. Lett., 10, 177 (1963); R. E. Cahill and R. G. Glauber, Phys. Rev., 177, 1882 (1969); S. Mancini, V. I. Man'ko, and P. Tombesi, Quantum Semiclass. Opt., 7, 615 (1995); V. I. Man'ko, L. Rose, and P. Vitale, “Probability representation in quantum field theory,” hep-th/9806164 (1998).

    Google Scholar 

  5. H. Umezawa, H. Matsumoto, and M. Tachiki, Thermo-Field Dynamics and Condensed States, North-Holland, Amsterdam (1982).

    Google Scholar 

  6. E. Fermi, Progr. Theor. Phys., 4, 570 (1950); Phys. Rev., 81, 115 (1950); 92, 452 (1953); L. D. Landau, Math. USSR, Izv., 17, 85 (1953).

    Google Scholar 

  7. J. Manjavidze and A. Sissakian, Phys. Rep., 346, 1 (2001).

    Google Scholar 

  8. V. E. Zakharov, JETP, 38, 108 (1974).

    Google Scholar 

  9. D. V. Skobeltzin, Z. Phys., 54, 68 (1929); C. R. Acad. Sci., 194, 118 (1932); G. V. Watagin, Z. Phys., 688, 9 2 (1934).

    Google Scholar 

  10. N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory of Quantum Fields [in Russian] (4th ed.), Nauka, Moscow (1984); English transl. prev. ed., Wiley, New York (1980).

    Google Scholar 

  11. V. G. Kadyshevskii, JETP, 19, 443, 597 (1964).

    Google Scholar 

  12. A. A. Logunov, M. A. Mestvirishvili, and V. A. Petrov, “General principles of quantum field theory and hadron interactions at high energies,” in: Quantum Field Theory and Its Consequences [in Russian], Nauka, Moscow (1977), p. 183; A. A. Logunov, M. A. Mestvirishvili, and Nguen Van Hieu, Phys. Lett. B, 25, 611 (1967); A. A. Logunov and M. A. Mestvirishvili, “General principles of the field theory and inclusive reactions at high energies,” CERN TH/1707, CERN, Geneva (1973).

    Google Scholar 

  13. V. De Alfaro, S. Fubini, G. Furlan, and C. Rossetti, Currents in Hadron Physics, North-Holland, Amsterdam (1973).

    Google Scholar 

  14. E. Kuraev, L. Lipatov, and V. Fadin, JETP, 44, 443 (1976); L. Lipatov, Sov. J. Nucl. Phys., 20, 94 (1975); V. Gribov and L. Lipatov, Sov. J. Nucl. Phys., 15, 438, 675 (1972); G. Altarelli and G. Parisi, Nucl. Phys. B, 126, 298 (1977); I. V. Andreev, Chromodynamics and Hard Processes at High Energies [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  15. V. N. Gribov, “Space-time description of hadron interactions at high energies [in Russian],” in: Proc. 8th LNPI School on Nuclear and Elementary Particle Physics (Leningrad, 1973), Vol. 2 (1973), p. 5; English transl.: hep-ph/0006158 (2000); O. V. Kancheli, JETP Letters, 18, 274 (1973); H. D. I. Abarbanel, J. D. Bronzan, R. L. Sugar, and A. K. White, Phys. Rep. C, 21, 119( 1975); J. Koplik and A. H. Mueller, Phys. Rev. D, 12, 3638 (1975); M. Baker and K. Ter-Martirosyan, Phys. Rep. C, 28, 1 (1976).

    Google Scholar 

  16. V. A. Matveev, R. M. Muradyan, and A. N. Tavkhelidze, Nuovo Cimento Lett., 5, 907 (1973); 7, 719 (1973); S. Brodski and C. Farrar, Phys. Rev. Lett., 31, 1153 (1973).

    Google Scholar 

  17. A. A. Logunov, A. N. Tavkhelidze, and L. D. Soloviev, Phys. Lett. B, 24, 181 (1967).

    Google Scholar 

  18. J. Polchinski, “TASI lectures on D-branes,” hep-th/9611050 (1996).

  19. J. Ellis, “Aspects of M theory and phenomenology,” hep-ph/9804440 (1998).

  20. V. A. Matveev, A. N. Sisakyan, and L. A. Slepchenko, Sov. J. Nucl. Phys., 23, 227 (1976); A. N. Sisakyan and N. B. Skachkov, “Multiple processes and the description of the constituent structure of hadrons in the threedimensional formulation of quantum field theory [in Russian],” in: Scientific Collaboration in Nuclear Physics (N. N. Bogoliubov, ed.), Énergoatomizdat, Moscow (1986), p. 56; S. Shch. Mavrodiev, V. K. Mitryushkin, A. N. Sisakyan, and G. T. Torosyan, Sov. J. Nucl. Phys., 30, 124 (1979); S. V. Chekanov, W. Kittel, and V. I. Kuvshiniv, J. Phys. G, 23, 951 (1997).

    Google Scholar 

  21. J. Manjavidze, Part. Nucl., 16, 44 (1985).

    Google Scholar 

  22. J. E. Mayer and M. Goeppert Mayer, Statistical Mechanics, Wiley, New York (1940).

    Google Scholar 

  23. D. E. Groom et al., European Phys. J. C., 15, 1 (2000).

    Google Scholar 

  24. P. V. Landsho., Nucl. Phys. B, 25, 129 (1992); E. Levin, “Everything about reggeons: Part I. Reggeons in “soft” interaction,” Preprint 97-213, DESY, Hamburg (1997); hep-ph/9710546 (1997); “25 years with the Pomeron,” Preprint 98-118, DESY, Hamburg (1998); hep-ph/9808483 (1998).

    Google Scholar 

  25. E. A. De Wolf, I. M. Dremin, and W. Kittel, Phys. Rep., 270, 1 (1996); P. Bozek, M. Ploszajczak, and R. Botet, Phys. Rep., 252, 101 (1995).

    Google Scholar 

  26. R. Hagedorn, Nuovo Cimento, 35, 216 (1965); E. L. Feinberg, Phys. Rep., 56, 237 (1972); I. V. Andreev and I. M. Dremin, Sov. Phys. Usp., 20, 381 (1977).

    Google Scholar 

  27. G. E. Uhlenbeck, “App. I: Boltzmann Equation [in Russian],” in: M. Kac, Probability and Related Questions in Physics, Mir, Moscow (1963), p. 227.

    Google Scholar 

  28. J. Manjavidze and A. Sissakian, in: Second VHM Physics Workshop (Dubna, 7-9 April 2001) (to appear).

  29. N. N. Bogoliubov, Problems of a Dynamical Theory in Statistical Physics [in Russian], Gostekhizdat, Moscow (1946); English transl., North-Holland, Amsterdam (1962).

    Google Scholar 

  30. J. Schwinger, J. Math. Phys. A, 9, 2363 (1994); L. Keldysh, JETP, 20, 1018 (1965); N. P. Landsman and Ch. G. vanWeert, Phys. Rep., 145, 141 (1987).

    Google Scholar 

  31. M. Martin and J. Schwinger, Phys. Rev., 115, 342 (1959); R. Kubo, J. Phys. Soc. Japan, 12, 570 (1957).

    Google Scholar 

  32. R. Haag, N. Hugengoltz, and M. Winnink, Commun. Math. Phys., 5, 5 (1967).

    Google Scholar 

  33. D. N. Zubarev, Nonequilibruim Statistical Thermodynamics [in Russian], Nauka, Moscow (1971); English transl., Plenum, New York (1974).

    Google Scholar 

  34. A. M. Baldin, Nucl. Phys. A, 434, 695 (1985); A. M. Baldin and A. I. Malakhov, JINR Rapid Commun., 1(87), 5 (1998).

    Google Scholar 

  35. C. N. Yang and R. I. Mills, Phys. Rev., 96, 191 (1954).

    Google Scholar 

  36. N. N. Bogoliubov, V. A. Matveev, and A. N. Tavkhelidze, “Colored quarks [in Russian],” in: Scienti.c Collaboration of Socialist Countries in Nuclear Physics, Énergoatomoizdat, Moscow (1986), p. 33; M. Han and Y. Nambu, Phys. Lett. B, 138, 1005 (1965).

    Google Scholar 

  37. P. A. M. Dirac, Lectures on Quantum Mechanics (Belfer Graduate School of Science), Yeshiva University, New York (1964).

    Google Scholar 

  38. J. C. Taylor, Nucl. Phys. B, 33, 436 (1971); A. A. Slavnov, Theor. Math. Phys., 10, 99 (1972); V. A. Rubakov, Classical and Gauge Fields [in Russian], Editorial URSS, Moscow (1999).

    Google Scholar 

  39. G. 't Hooft and M. Veltman, “Diagrammar,” Rep. No. 73-9-CERN, CERN, Geneva (1973).

    Google Scholar 

  40. L. D. Faddeev and V. N. Popov, Phys. Lett. B, 25, 29 (1967).

    Google Scholar 

  41. V. N. Gribov, Nucl. Phys. B, 139, 246 (1978).

    Google Scholar 

  42. I. M. Singer, Commun. Math. Phys., 60, 7 (1978); M. F. Atiyah and J. D. S. Jones, Commun. Math. Phys., 61, 97 (1978).

    Google Scholar 

  43. S.V. Shabanov, Phys. Rep., 326, 1 (2000); B. De Witt and C. Molina-Paris, “Quantum gravity without ghosts,” hep-th/9808163 (1998).

    Google Scholar 

  44. D. J. Gross and F. Wilczek, Phys. Rev. Lett., 30, 1343 (1973); H. D. Politzer, Phys. Rev. Lett., 30, 1346 (1973).

    Google Scholar 

  45. Yu. L. Dokshitser, D. I. Dyakonov, and S. I. Troyan, Phys. Rep., 58, 211 (1980); E. Kuraev, J. Manjavidze, and A. Sissakian, “Multiplicity distribution tails at high energies,” hep-ph/0003093 (2000).

    Google Scholar 

  46. K. Konishi, A. Ukawa, and G. Veneziano, Phys. Lett. B, 80, 259 (1979); A. Basseto, M. Ciafaloni, and G. Marchesini, Nucl. Phys. B, 163, 477 (1980).

    Google Scholar 

  47. D. V. Shirkov, “Analytic perturbation theory for QCD observables,” hep-ph/0012283 (2000).

  48. V. I. Zakharov, Progr. Theor. Phys. Suppl., 131, 107 (1998); F. V. Gubarev, M. I. Polikarpov, and V. I. Zakharov, “Physics of the power corrections in QCD,” hep-ph/9908292 (1999).

    Google Scholar 

  49. V. E. Korepin and L. D. Faddeev, Theor. Math. Phys., 25, 1039 (1975).

    Google Scholar 

  50. I. D. Mandzhavidze and A. N. Sissakian, Theor. Math. Phys., 123, 776 (2000).

    Google Scholar 

  51. J. Manjavidze, J. Math. Phys., 41, 5710 (2000); hep-th/0104252 (2001).

    Google Scholar 

  52. J. Manjavidze and A. Sissakian, J. Math. Phys., 42, 641 (2001); hep-ph/0104297 (2001).

    Google Scholar 

  53. J. Manjavidze and A. Sissakian, “Yang-Mills fields quantization in the factor space,” J. Math. Phys. (to appear); hep-ph/0104298 (2001).

  54. L. D. Faddeev and V. E. Korepin, Phys. Rep. C, 42, 1 (1978).

    Google Scholar 

  55. R. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev. D, 10, 4114, 4130 (1974).

    Google Scholar 

  56. J. Manjavidze, Sov. J. Nucl. Phys., 45, 442 (1987).

    Google Scholar 

  57. R. Jackiw, Rev. Mod. Phys., 49, 681 (1977).

    Google Scholar 

  58. N. Bogoliubov and S. Tyablikov, Zh. Eksp. Teor. Fiz., 19, 256 (1949).

    Google Scholar 

  59. L. A. Takhtadzhyan and L. D. Faddeev, The Hamiltonian Methods in the Theory of Solitons [in Russian], Nauka, Moscow (1986); English transl.: L. D. Faddeev and L. A. Takhtajan, Berlin, Springer (1987).

    Google Scholar 

  60. L. D. Faddeev and L. A. Takhtadzhyan, Usp. Mat. Nauk, 29, 249 (1974); R. Jackiw, C. Nohl, and C. Rebbi, “Classical an semi-classical solutions of the Yang-Mills theory,” in: Particles and Fields (Proc., Ban., Canada, 25 Aug.-3 Sept., 1977, D. H. Boal and A. N. Kamal, eds.), Plenum, New York (1978).

    Google Scholar 

  61. G. W. Mackey, Induced Representation of Groups and Quantum Mechanics, Benjamin, New York (1969); N. Woodhouse, Geometric Quantization, Oxford Univ. Press, Oxford (1980); N. P. Landsman and N. Linden, Nucl. Phys. B, 365, 121 (1991); N. P. Landsman, Rev. Math. Phys., 2, 45, 73 (1991); C. J. Isham, Relativity, Groups, and Topology: II, North-Holland, Amsterdam (1984).

    Google Scholar 

  62. R. Rajaraman, Solitons and Instantons: An Introduction to Solitons and Instantons in Quantum Field Theory, North-Holland, Amsterdam (1982); A. B. Zamolodchikov and A. B. Zamolodchikov, Phys. Lett. B, 72, 503 (1978).

    Google Scholar 

  63. S. F. Edwards and Y. V. Gulyaev, Proc. Roy. Soc. London A, 279, 229 (1964); M. S. Marinov, Phys. Rep., 60, 1 (1980).

    Google Scholar 

  64. B. S. De Witt, Rev. Mod. Phys., 29, 377 (1957).

    Google Scholar 

  65. V. De Alfaro, S. Fubini, and G. Furlan, Phys. Lett. B, 65, 163 (1976); V. De Alfaro, S. Fubini, and G. Furlan, Acta Phys. Aus. Suppl., 22, 51 (1980).

    Google Scholar 

  66. T. Bibilashvili and I. Pasiashvili, Ann. Phys., 220, 134 (1992).

    Google Scholar 

  67. P. Kadano. and P. C. Martin, Ann. Phys., 24, 419 (1963).

    Google Scholar 

  68. J. Schwinger, Particles, Sources, and Fields, Vol. 1, Addison-Wesley, Reading, Mass. (1970).

    Google Scholar 

  69. L. Landau and R. Peierls, Z. Phys., 69, 56 (1931).

    Google Scholar 

  70. R. Mills, Propagators for Many-Particle Systems, Gordon and Breach, New York (1970).

    Google Scholar 

  71. N. P. Landsman and C. G. van Weert, Phys. Rep., 145, 141 (1987); E. Calsetta and B. L. Hu, Phys. Rev. D, 37, 2878 (1988).

    Google Scholar 

  72. E. Byukling and K. Kajantie, Particle Kinematics, Wiley, London (1973).

    Google Scholar 

  73. M. Martin and J. Schwinger, Phys. Rev., 115, 342 (1959).

    Google Scholar 

  74. N. N. Bogolyubov, Physica, 26, S1 (1960).

    Google Scholar 

  75. A. J. Niemi and G. Semeno., Ann. Phys., 152, 105 (1984).

    Google Scholar 

  76. J. Schwinger, J. Math. Phys. A, 9, 2363 (1994).

    Google Scholar 

  77. P. M. Bakshi and K. T. Mahanthappa, J. Math. Phys., 4, 1, 12 (1961).

    Google Scholar 

  78. J. Manjavidze and A. Sissakian, JINR Rapid Commun., 2/281, 13 (1988).

    Google Scholar 

  79. S. Smale, Invent. Math., 11, No. 1, 45 (1970); R. Abraham and J. E. Marsden, Foundations of Mechanics, Benjamin, Reading, Mass. (1978).

    Google Scholar 

  80. V. I. Arnold, Mathematical Methods of Classical Mechanics [in Russian] (3rd ed.), Nauka, Moscow (1989); English transl. prev. ed., Springer, Berlin (1978).

    Google Scholar 

  81. A. A. Belavin, A. M. Polyakov, A. S. Schwartz, and Yu. S. Tyupkin, Phys. Lett. B, 59, 85 (1975).

    Google Scholar 

  82. A. M. Polyakov, Nucl. Phys. B, 120, 429 (1977).

    Google Scholar 

  83. B. M. Barbashov, JETP, 21, 402 (1965).

    Google Scholar 

  84. A. Actor, Rev. Mod. Phys., 51, 461 (1979).

    Google Scholar 

  85. L. S. Boya, J. F. Carinena, and J. Mateos, Fortschr. Phys., 26, 175 (1978).

    Google Scholar 

  86. L. V. Gribov, E. M. Levin, and M. G. Ryskin, Phys. Rep. C, 100, 1 (1983).

    Google Scholar 

  87. C. Grosche, Path Integrals, Hyperbolic Spaces, and Selberg Trace Formulae, World Scientific, Singapore (1995).

    Google Scholar 

  88. P. Glansdor. and I. Prigogine, Thermodynamic Theory of Structure, Stability, and Fluctuations, Wiley, London (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandjavidze, J., Sissakian, A.N. A Field Theory Description of Constrained Energy-Dissipation Processes. Theoretical and Mathematical Physics 130, 153–197 (2002). https://doi.org/10.1023/A:1014294414641

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014294414641

Keywords

Navigation