Skip to main content
Log in

An experimental survey of a posteriori Courant finite element error control for the Poisson equation

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

This comparison of some a posteriori error estimators aims at empirical evidence for a ranking of their performance for a Poisson model problem with conforming lowest order finite element discretizations. Modified residual-based error estimates compete with averaging techniques and two estimators based on local problem solving. Multiplicative constants are involved to achieve guaranteed upper and lower energy error bounds up to higher order terms. The optimal strategy combines various estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ainsworth and J.T. Oden, A posteriori error estimators for second order elliptic systems. Part 1. Theoretical foundations and a posteriori error analysis, Comput. Math. Appl. 25(2) (1993) 101–113.

    Google Scholar 

  2. M. Ainsworth and J.T. Oden, A posteriori error estimators for second order elliptic systems. Part 2. An optimal order process for calculating self-equilibrating fluxes, Comput. Math. Appl. 26(9) (1993) 75–87.

    Google Scholar 

  3. M. Ainsworth and J.T. Oden, A unified approach to a posteriori error estimation using element residual methods, Numer. Math. 65 (1993) 23–50.

    Google Scholar 

  4. M. Ainsworth and J.T. Oden, A Posteriori Error Estimation in Finite Element Analysis (Wiley, 2000).

  5. J. Alberty, C. Carstensen and S.A. Funken, Remarks around 50 lines of Matlab: short finite element implementation, Numer. Algorithms 20 (1999) 117–137.

    Google Scholar 

  6. I. Babuška and A.Miller, A feedback finite element method with a posteriori error estimations. Part I. The finite element method and some basic properties of the a posteriori error estimator, Comput. Methods Appl. Mech. Engrg. 61 (1987) 1–40.

    Google Scholar 

  7. I. Babuška and W.C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15 (1978) 736–754.

    Google Scholar 

  8. I. Babuška and T. Strouboulis, The Finite ElementMethod and its Reliability (Oxford University Press, 2001).

  9. R.E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Math. Comp. 44(170) (1985) 283–301.

    Google Scholar 

  10. S. Bartels and C. Carstensen, Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II. Higher order FEM, Math. Comp. (2001) (in press). Preprint http://www.numerik.uni-kiel.de/reports/2000/00-5.html

  11. S. Bartels and C. Carstensen, Averaging techniques yield reliable a posteriori fiinite element error control for obstacle problems (2001) (submitted). Preprint http://www.numerik.unikiel.de/reports/2001/01-2.html

  12. S. Bartels, C. Carstensen, and G. Dolzmann, Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis (2001) (in preparation).

  13. R. Becker and R. Rannacher, A feed-back approach to error control in finite element methods: basic analysis and examples, East-West Journal of Numerical Mathematics 4(4) (1996) 237–264.

    Google Scholar 

  14. F. Bornemann, B. Erdmann and R. Kornhuber, A posteriori error estimates for elliptic problems in two and three space dimensions, SIAM J. Numer. Anal. 33(3) (1996) 1188–1204.

    Google Scholar 

  15. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, Vol. 15 (Springer, New York, 1994).

    Google Scholar 

  16. C. Carstensen, Quasi interpolation and a posteriori error analysis in finite element method, Modél Math. Anal. Numér. 33 (1999) 1187–1202.

    Google Scholar 

  17. C. Carstensen, Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomee criterion for H 1-stability of the L 2-projection onto finite element spaces, Math. Comp. 71 (2002) 157–163.

    Google Scholar 

  18. C. Carstensen, An adaptive mesh refining algorithm allowing for an H 1-stable L 2-projection onto Courant finite element spaces (2001) (in preparation).

  19. C. Carstensen and J. Alberty, Averaging techniques for reliable a posteriori FE-error control in elastoplasticity with hardening, Berichtsreihe des Mathematischen Seminars Kiel, Technical report 00-23, Christian-Albrechts-Universität zu Kiel, Kiel (2000). Preprint http://www.numerik.uni-kiel.de/reports/2000/00-23.html

    Google Scholar 

  20. C. Carstensen and S. Bartels, Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids part I. Low order conforming, nonconforming, and mixed FEM, Math. Comp. (2001). In press; http://www.numerik.uni-kiel.de/reports/1999/99-11.html

  21. C. Carstensen and S.A. Funken, Constants in Clément-interpolation error and residual based a posteriori error estimates in Finite Element Methods, East-West Journal of Numerical Analysis 8(3) (2000) 153–256.

    Google Scholar 

  22. C. Carstensen and S.A. Funken, Fully reliable localised error control in the FEM, SIAM J. Sci. Comput. 21(4) (2000) 1465–1484.

    Google Scholar 

  23. C. Carstensen and S.A. Funken, Averaging technique for FE-a posteriori error control in elasticity. Part I. Conforming FEM, Comput. Methods Appl. Mech. Engrg. 190 (2001) 2483–2498.

    Google Scholar 

  24. C. Carstensen and S.A. Funken, Averaging technique for FE-a posteriori error control in elasticity. Part II. λ-independent estimates, Comput. Methods Appl. Mech. Engrg. 190(35/36) (2001) 4663–4675.

    Google Scholar 

  25. C. Carstensen and S.A. Funken, Averaging technique for FE-a posteriori error control in elasticity. Part III. Locking-free nonconforming FEM, Comput.Methods Appl.Mech. Engrg. (2001) (accepted). Preprint http://www.numerik.uni-kiel.de/reports/2000/00-11.html

  26. C. Carstensen and S.A. Funken, A posteriori error control in low-order finite element discretisations of incompressible stationary flow problems, Math. Comp. 70(236) (2001) 1353–1381.

    Google Scholar 

  27. C. Carstensen and R. Verfürth, Edge residuals dominate a posteriori error estimates for low order finite element methods, SIAM J. Numer. Anal. 36(5) (1999) 1571–1587.

    Google Scholar 

  28. P.G. Ciarlet, The Finite Element Method for Elliptic Problems (North-Holland, Amsterdam, 1978).

    Google Scholar 

  29. W. Doerfler, A convergent adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal. 33(3) (1996) 1106–1124.

    Google Scholar 

  30. W. Doerfler and R.H. Nochetto, Small data oscillation implies the saturation assumption, Numerische Mathematik, DOI 10.1007/S002110100321; Online publication: 25 July 2001.

  31. K. Eriksson, D. Estep, P. Hansbo and C. Johnson, Introduction to adaptive methods for differential equations, Acta Numerica (1995) 105–158.

  32. P. Ladeveze and D. Leguillon, Error estimate procedure in the finite element method and applications, SIAM J. Numer. Anal. 20(3) (1983) 485–509.

    Google Scholar 

  33. P. Morin, R.H. Nochetto and K.G. Siebert, Data oscillation and convergence of adaptive FEM, SIAM J. Numer. Anal. 38(2) (2000) 466–488.

    Google Scholar 

  34. P. Morin, R.H. Nochetto and K.G. Siebert, Local problems on stars: A posteriori error estimators, convergence, and performance, Preprint.

  35. R. Nochetto, Removing the saturation assumption in a posteriori error analysis, Rend. Sci. Mat. Appl. A 127 (1994) 67–82.

    Google Scholar 

  36. L.E. Payne and H.F. Weinberger, An optimal Poincaré inequality for convex domains, Archive Rat. Mech. Anal. 5 (1960) 286–292.

    Google Scholar 

  37. R. Rodriguez, Some remarks on Zienkiewicz-Zhu estimator, Internat. J. Numer. Methods PDE 10 (1994) 625–635.

    Google Scholar 

  38. R. Rodriguez, A posteriori error analysis in the finite element method, in: Finite Element Methods. 50 years of the Courant Element, Conference Held at the University of Jyvaeskylae, Finland, 1993, Lecture Notes in Pure and Applied Mathematics, Vol. 164 (1994) pp. 625–635.

    Google Scholar 

  39. T. Strouboulis, I. Babuška and S.K. Gangaraj, Guaranteed computable bounds for the exact error in the finite element solution. Part II. Bounds for the energy norm of the error in two dimensions, Internat. J. Numer. Methods Engrg. 47(1-3) (2000) 427–475.

    Google Scholar 

  40. R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh Refinement Techniques (Wiley-Teubner, 1996).

  41. O.C. Zienkiewicz and J.Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis, Internat. J. Numer. Methods Engrg. 24 (1987) 337–357.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Klose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carstensen, C., Bartels, S. & Klose, R. An experimental survey of a posteriori Courant finite element error control for the Poisson equation. Advances in Computational Mathematics 15, 79–106 (2001). https://doi.org/10.1023/A:1014269318616

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014269318616

Navigation