Skip to main content
Log in

On Mixed Error Estimates for Elliptic Obstacle Problems

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We establish in this paper sharp error estimates of residual type for finite element approximation to elliptic obstacle problems. The estimates are of mixed nature, which are neither of a pure a priori form nor of a pure a posteriori form but instead they are combined by an a priori part and an a posteriori part. The key ingredient in our derivation for the mixed error estimates is the use of a new interpolator which enables us to eliminate inactive data from the error estimators. One application of our mixed error estimates is to construct a posteriori error indicators reliable and efficient up to higher order terms, and these indicators are useful in mesh-refinements and adaptive grid generations. In particular, by approximating the a priori part with some a posteriori quantities we can successfully track the free boundary for elliptic obstacle problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ainsworth and J.T. Oden, A unified approach to a posteriori error estimation using element residual methods, Numer. Math. 65 (1993) 23–50.

    Google Scholar 

  2. M. Ainsworth and J.T. Oden, A posteriori error estimation in finite element analysis, Comput. Methods Appl. Mech. Engrg. 142 (1997) 1–88.

    Google Scholar 

  3. J. Baranger and H. El Amri, Estimateurs a posteriori d'erreur pour le cal-cul adaptatif d'écoulements quasi-newtoniens, RAIRO Modél. Math. Anal. Numér. 25 (1991) 31–47.

    Google Scholar 

  4. H. Brézis, Problèmes unilatéraux, J. Math. Pure Appl. (9) 51 (1972) 1–168.

  5. Z. Chen and R.H. Nochetto, Residual type a posteriori error estimates for elliptic obstacle problems, Numer. Math. 84 (2000) 527–548.

    Google Scholar 

  6. P.G. Ciarlet, The Finite Element Method for Elliptic Problems (North-Holland, Amsterdam, 1978).

    Google Scholar 

  7. R. Durán, M.A. Muschietti and R. Rodríguez, On the asymptotic exactness of error estimators for linear triangular finite elements, Numer. Math. 59 (1991) 107–127.

    Google Scholar 

  8. G. Duvaut and J.L. Lions, The Inequalities in Mechanics and Physics (Springer-Verlag, 1973).

  9. C.M. Elliott and J.R. Ockendon, Weak and Variational Methods for Moving Boundary Problems, Research Notes in Mathematics, Vol. 59 (Pitman, Boston, 1982).

    Google Scholar 

  10. D.A. French, S. Larsson and R.H. Nochetto, Pointwise a posteriori error analysis for an adaptive penalty finite element method for the obstacle problem (in preparation).

  11. A. Friedman, Variational Principles and Free-Boundary Problems (Academic Press, New York, 1982).

    Google Scholar 

  12. R. Glowinski, J.L. Lions and R. Tremolieres, Numerical Analysis of Variational Inequalities (North-Holland, Amsterdam, 1972).

    Google Scholar 

  13. D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications (Academic Press, New York, 1980).

    Google Scholar 

  14. R. Kornhuber, A posteriori error estimates for elliptic variational inequalities, Comput. Math. Appl. 31 (1996) 49–60.

    Google Scholar 

  15. A. Kufner, O. John and S. Fucik, Function Spaces (Nordhoff, Leyden, The Netherlands, 1977).

    Google Scholar 

  16. R. Li, W.B. Liu and T. Tang, Moving mesh method with error-estimator-based monitor and its application to static obstacle problem (2001) (submitted) http://www.math.hkbu.edu.hk/~ttang

  17. R. Li, T. Tang and P.-W. Zhang, Moving mesh methods in multiple dimensions based on harmonic maps, J. Comput. Phys. 170 (2001) 562–588.

    Google Scholar 

  18. W.B. Liu and N.N. Yan, A posteriori error estimates for a class of variational inequalities, J. Sci. Comput. 35 (2000) 361–393.

    Google Scholar 

  19. R. Verfürth, A posteriori error estimators for the Stokes equations, Numer. Math. 55 (1989) 309–325.

    Google Scholar 

  20. R. Verfürth, A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations, Math. Comp. 62 (1994) 445–475.

    Google Scholar 

  21. O.C. Zienkiewicz and J.Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis, Int. J. Numer. Methods Engrg. 24 (1987) 337–357.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Ma, H. & Tang, T. On Mixed Error Estimates for Elliptic Obstacle Problems. Advances in Computational Mathematics 15, 261–283 (2001). https://doi.org/10.1023/A:1014261013164

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014261013164

Navigation