Skip to main content
Log in

Spatially restricted gene flow and reduced microsatellite polymorphism in the Eurasian otter Lutra lutra in Britain

  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Although gene flow and population fragmentationwill often have opposed effects on geneticstructure, their actual effects on many elusiveanimal species are unknown. We assessed sucheffects in British populations of the Eurasianotter Lutra lutra by analysis ofgenotypes consisting of 12 microsatellites from618 carcasses representing the period 1982–1998. Spatial patterns of genetic subdivisionand levels of polymorphism in the continuouspopulation in Scotland were estimated. Theseresults were used to infer patterns of geneflow in Scottish otters and assess theinfluence of fragmentation on the geneticstructure of otters in Wales and SW England.The latter showed no higher genetic divergencethan expected given the degree of isolation bydistance found in the Scottish population, andtheir distributions of microsatellite allelesizes provided no evidence for populationbottlenecks. Nonetheless, otters in southernBritain contained significantly lower levels ofmicrosatellite polymorphism than otters inScotland, and the population in the westernpeninsula of SW England was geneticallydistinct. These results suggested that thegenetic structure of the Scottish population isdue more to restricted contemporary gene flowthan to historical fluctuations insubpopulation size, and that the geneticstructure of the southern British populationsis due more to small historical effective sizesthan to recent declines. If spatiallyrestricted gene flow is typical of all Eurasianotter populations then data on dispersal shouldbe taken into account when sitting protectedareas for this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews E, Howell P, Johnson K (1993) Otter survey ofWales 1991. The Vincent Wildlife Trust, London.

    Google Scholar 

  • Anonymous (1995) Biodiversity: The UK Steering Group Report, Volume 2. Action Plans, HMSO, London.

  • Anonymous (1996) A Framework for Otter Conservation in the UK: 1995–2000. Joint Nature Conservation Committee, Peterborough.

  • Brookes MI, Graneau YA, King P, Rose OC, Thomas CD, Mallet JLB (1997) Genetic analysis of founder bottlenecks in the rare British butterfly Plebejus argus. Conserv. Biol., 11, 648–661.

    Google Scholar 

  • Brown AE, Burn AJ, Hopkins JJ, Way SF (1997) The Habitats Directive: selection of Special Areas of Conservation in the UK Joint Nature Conservation Committee, Peterborough.

    Google Scholar 

  • Burland TM, Barratt EM, Beaumont MA, Racey PA (1999) Population Genetic Structure and Gene Flow in a Gleaning Bat, Plecotus auritus. Proc. R. Soc. Lond. B., 266, 975–980.

    Google Scholar 

  • Cassens I, Tiedemann R, Suchentrunk F, Hartl GB (2000) Mitochondrial DNA variation in the European otter (Lutra lutra) and the use of spatial autocorrelation analysis in conservation. J. Hered., 91, 31–35.

    Google Scholar 

  • Chanin PRF, Jefferies DJ (1978) The decline of the otter Lutra lutra L. in Britain: an analysis of hunting records and discussion of causes. Biol. J. Linn. Soc., 10, 305–328.

    Google Scholar 

  • Chesser RK (1991) Influence of gene flow and breeding tactics on gene diversity within populations. Genetics, 129, 573–583.

    Google Scholar 

  • Clarke GM (1995) Relationships between developmental stability and fitness – application for conservation biology. Conserv. Biol., 9, 18–24.

    Google Scholar 

  • Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol. Evol., 15, 290–295.

    Google Scholar 

  • Dallas JF, Bacon PJ, Carss DN, Conroy JWH, Green R, Jefferies DJ, Kruuk H, Marshall F, Piertney SB, Racey PA (1999) Genetic diversity in the Eurasian otter, Lutra lutra, in Scotland. Evidence from microsatellite polymorphism. Biol. J. Linn. Soc., 68, 73–86.

    Google Scholar 

  • Durbin LS (1996) Individual differences in spatial utilization of a river system by otters Lutra lutra. Acta Theriol., 41, 137–147.

    Google Scholar 

  • Effenberger S, Suchentrunk F (1999) RFLP analysis of the mitochondrial DNA of otters (Lutra lutra) from Europe – implications for conservation of a flagship species. Biol. Conserv., 90, 229–234.

    Google Scholar 

  • Frankham R (1995) Conservation genetics. Annu. Rev. Genet., 29, 305–327.

    Google Scholar 

  • Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol. Ecol., 10, 305–318.

    Google Scholar 

  • Gilligan DM, Woodworth LM, Montgomery ME, Nurthen RK, Briscoe DA, Frankham R (2000) Can fluctuating asymmetry be used to detect inbreeding and loss of genetic diversity in endangered populations? Anim. Conserv., 3, 97–104.

    Google Scholar 

  • Goodman SJ (1997) R ST Calc: a collection of computer programs for calculating estimates of genetic differentiation from microsatellite data and determining their significance. Mol. Ecol., 6, 881–885.

    Google Scholar 

  • Goodman SJ (1998) Patterns of extensive genetic differentiation and variation among European harbor seals (Phoca vitulina vitulina) revealed using microsatellite DNA polymorphisms. Mol. Biol. Evol., 15, 104–118.

    Google Scholar 

  • Goudet J (1995) Fstat (version 1.2) – a computer program to calculate F-statistics. J. Hered., 86, 485–486.

    Google Scholar 

  • Green J, Green R, Jefferies DJ (1984) A radio-tracking survey of otters Lutra lutra on a Perthshire river system. Lutra, 27, 85–145.

    Google Scholar 

  • Green R, Green J. (1997) Otter Survey of Scotland 1991–1994. The Vincent Wildlife Trust, London.

    Google Scholar 

  • Greenwood P (1980) Mating systems, philopatry and dispersal in birds and mammals. Anim. Behav., 28, 1140–1162.

    Google Scholar 

  • Hedrick PW (1999) Perspective: Highly variable loci and their interpretation in evolution and conservation. Evolution, 53, 313–318.

    Google Scholar 

  • Hilton-Taylor C (2000). 2000 IUCN red list of threatened species (Gland: IUCN).

  • Jefferies DJ, Wayre P, Jessop RM, Mitchell-Jones AJ (1986) Reinforcing the native otter Lutra lutra population in East Anglia – an analysis of the behavior and range development of the first release group. Mammal Rev., 16, 65–79.

    Google Scholar 

  • Koenig WD, van Vuren D, Hooge PN (1996) Detectability, philopatry, and the distribution of dispersal distances in vertebrates. Trends Ecol. Evol., 11, 514–517.

    Google Scholar 

  • Kruuk H (1995) Wild Otters. Oxford University Press, New York.

    Google Scholar 

  • Kruuk H, Moorhouse A (1991) The spatial organization of otters (Lutra lutra) in Shetland. J. Zool., 224, 41–57.

    Google Scholar 

  • Kyle CJ, Davis CS, Strobeck C (2000) Microsatellite analysis of North American pine marten (Martes americana) populations from the Yukon and Northwest Territories. Can. J. Zool., 78, 1150–1157.

    Google Scholar 

  • Marshall TC, Spalton JA (2000) Simultaneous inbreeding and outbreeding depression in reintroduced Arabian oryx. Anim. Conserv., 3, 241–248.

    Google Scholar 

  • Mills LS, Allendorf FW (1996) The one-migrant-per-generation rule in conservation and management. Conserv. Biol., 10, 1509–1518.

    Google Scholar 

  • Mucci N, Pertoldi C, Madsen AB, Loeschcke V, Randi E (1999) Extremely low mitochondrial DNA control-region sequence variation in the otter Lutra lutra population of Denmark. Hereditas, 130, 331–336.

    Google Scholar 

  • Nagylaki T (1998) Fixation indices in subdivided populations. Genetics, 148, 1325–1332.

    Google Scholar 

  • Nei M. (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89, 583–590.

    Google Scholar 

  • Paetkau D, Waits LP, Clarkson PL, Craighead L, Strobeck C (1997) An empirical evaluation of genetic distance statistics using microsatellite data from bear (Ursidae) populations. Genetics, 147, 1943–1957.

    Google Scholar 

  • Paetkau D, Waits LP, Clarkson PL, Craighead L, Vyse E, Ward R, Strobeck C (1998) Variation in genetic diversity across the range of North American brown bears. Conserv. Biol., 12, 418–429.

    Google Scholar 

  • Paetkau D, Amstrup SC, Born EW, Calvert W, Derocher AE, Garner GW, Messier F, Stirling I, Taylor MK, Wiig O, Strobeck C (1999) Genetic structure of the world's polar bear populations. Mol. Ecol., 8, 1571–1584.

    Google Scholar 

  • Pertoldi C, Loeschcke V, Braun A, Madsen AB, Randi E (2000) Craniometrical variability and developmental stability. Two useful tools for assessing the population viability of Eurasian otter (Lutra lutra) populations in Europe. Biol. J. Linn. Soc., 70, 309–323.

    Google Scholar 

  • Piertney SB, MacColl ADC, Bacon PJ, Dallas JF (1998) Local genetic structure in red grouse (Lagopus lagopus scoticus): evidence from microsatellite DNA markers. Mol. Ecol., 7, 1645–1654.

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly PJ (2000) Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.

    Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2) – population genetics software for exact tests and ecumenicism. J. Hered., 86, 248–249.

    Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics, 145, 1219–1228.

    Google Scholar 

  • Sjöåsen T (1997) Movements and establishment of reintroduced European otters Lutra lutra. J. Appl. Ecol., 34, 1070–1080.

    Google Scholar 

  • Slatkin M (1985) Gene flow in natural populations. Annu. Rev. Ecol. Syst., 16, 393–430.

    Google Scholar 

  • Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics, 139, 457–462.

    Google Scholar 

  • Strachan R, Jefferies DJ (1996). Otter Survey of England 1991–1994. The Vincent Wildlife Trust, London.

    Google Scholar 

  • Swofford DL, Selander RB (1981) BIOSYS-1 – a FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics. J. Hered., 72, 281–283.

    Google Scholar 

  • Waits L, Taberlet P, Swenson JE, Sandegren F, Franzén R (2000) Nuclear DNA microsatellite analysis of genetic diversity and gene flow in the Scandinavian brown bear (Ursus arctos). Mol. Ecol., 9, 421–431.

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358–1370.

    Google Scholar 

  • Whitlock MC (1992) Temporal fluctuations in demographic parameters and the genetic variance among populations. Evolution, 46, 608–615.

    Google Scholar 

  • Whitlock MC, McCauley DE (1999) Indirect measures of gene flow and migration: F ST ≠ 1/(4Nm + 1). Heredity, 82, 117–125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Dallas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dallas, J.F., Marshall, F., Piertney, S.B. et al. Spatially restricted gene flow and reduced microsatellite polymorphism in the Eurasian otter Lutra lutra in Britain. Conservation Genetics 3, 15–28 (2002). https://doi.org/10.1023/A:1014259218632

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014259218632

Navigation