Skip to main content
Log in

Flare Plasma Cooling from 30 MK down to 1 MK modeled from Yohkoh, GOES, and TRACE observations during the Bastille Day Event (14 July 2000)

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We present an analysis of the evolution of the thermal flare plasma during the 14 July 2000, 10 UT, Bastille Day flare event, using spacecraft data from Yohkoh/HXT, Yohkoh/SXT, GOES, and TRACE. The spatial structure of this double-ribbon flare consists of a curved arcade with some 100 post-flare loops which brighten up in a sequential manner from highly-sheared low-lying to less-sheared higher-lying bipolar loops. We reconstruct an instrument-combined, average differential emission measure distribution dEM(T)/dT that ranges from T=1 MK to 40 MK and peaks at T 0=10.9 MK. We find that the time profiles of the different instrument fluxes peak sequentially over 7 minutes with decreasing temperatures from T≈30 MK to 1 MK, indicating the systematic cooling of the flare plasma. From these temperature-dependent relative peak times t peak(T) we reconstruct the average plasma cooling function T(t) for loops observed near the flare peak time, and find that their temperature decrease is initially controlled by conductive cooling during the first 188 s, T(t)∼[1+(tcond)]−2/7, and then by radiative cooling during the next 592 s, T(t)∼[1−(trad)]3/5. From the radiative cooling phase we infer an average electron density of n e=4.2×1011 cm−3, which implies a filling factor near 100% for the brightest observed 23 loops with diameters of ∼1.8 Mm that appear simultaneously over the flare peak time and are fully resolved with TRACE. We reproduce the time delays and fluxes of the observed time profiles near the flare peak self-consistently with a forward-fitting method of a fully analytical model. The total integrated thermal energy of this flare amounts to E thermal=2.6×1031 erg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, D. and Metcalf, T. R.: 1997, Astrophys. J. 489, 442.

    Article  ADS  Google Scholar 

  • Antiochos, S. K.: 1980, Astrophys. J. 241, 385.

    Article  ADS  Google Scholar 

  • Antiochos, S. K. and Sturrock, P. A.: 1978, Astrophys. J. 220, 1137.

    Article  ADS  Google Scholar 

  • Aschwanden, M. J., Bynum, R. M., Kosugi, T., Hudson, H. S., and Schwartz, R. A.: 1997, Astrophys. J. 487, 936.

    Article  ADS  Google Scholar 

  • Aschwanden, M. J., Tarbell, R. D., Nightingale, R. W. Schrijver, C. J., Title, A., Kankelborg, C. C., Martens, P., and Warren, H. P.: 2000, Astrophys. J. 535, 1047.

    Article  ADS  Google Scholar 

  • Cargill, P. J., Mariska, J. T., and Antiochos, S. K.: 1995, Astrophys. J. 439, 1034.

    Article  ADS  Google Scholar 

  • Carmichael, H.: 1964, in W. N. Hess (ed.), AAS-NASA Symposium on Solar Flares (NASA SP-50), p. 451.

  • Culhane, J. L. et al.: 1994, Solar Phys. 153, 307.

    Article  ADS  Google Scholar 

  • Feldman, U.: 1992, Phys. Scripta 46, 202.

    ADS  Google Scholar 

  • Fisher, G. H. and Hawley, S. L.: 1990, Astrophys. J. 357, 243.

    Article  ADS  Google Scholar 

  • Freeland, S. L. and Handy, B. N. et al.: 1998, Solar Phys. 182, 497.

    Article  ADS  Google Scholar 

  • Handy, B. et al.: 1999, Solar Phys. 187, 229.

    Article  ADS  Google Scholar 

  • Kopp, R. A. and Pneuman, G. W.: 1976, Solar Phys. 50, 85.

    Article  ADS  Google Scholar 

  • Kosugi, T. et al.: 1991, Solar Phys. 136, 17.

    Article  ADS  Google Scholar 

  • Mariska, J. T., Emslie, A. G., and Li, P.: 1989, Astrophys. J. 341, 1067.

    Article  ADS  Google Scholar 

  • Masuda, S.: 1994, Hard X-Ray Sources and the Primary Energy Release Site in Solar Flares, Ph.D. Thesis, Natl. Astronomical Obs., Mitaka, Tokyo 181, Japan.

    Google Scholar 

  • Masuda, S., Kosugi, T., and Hudson, H. S.: 2001, Solar Phys., this issue.

  • Meyer, J. P.: 1985, Astrophys. J. Suppl. 57, 173.

    Article  ADS  Google Scholar 

  • Rosner, R., Tucker, W. H., and Vaiana, G. S.: 1978, Astrophys. J. 220, 643.

    Article  ADS  Google Scholar 

  • Sakao, T., Kosugi, T., Masuda, S., Inda, M., Makishima, K., Canfield, R. C., Hudson, H. S., Metcalf, T. R., Wuelser, J.-P., Acton, L. W., and Ogawara, Y.: 1992, Publ. Astron. Soc. Japan 44, L83.

    ADS  Google Scholar 

  • Schrijver, C. J., Title, A., and the TRACE Team: 2001, Solar Phys. 200,CD-ROM.

  • Sturrock, P. A.: 1966, Nature 211, 695.

    ADS  Google Scholar 

  • Tsuneta, S.: 1996, Astrophys. J. 456, 840.

    Article  ADS  Google Scholar 

  • Tsuneta, S. et al.: 1991, Solar Phys. 136, 37.

    Article  ADS  Google Scholar 

  • Yan, Y., Deng, Y., Karlický, M., Fu, Q., Wang, S., and Liu, Y.: 2001, Astrophys. J. 551, L115.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aschwanden, M.J., Alexander, D. Flare Plasma Cooling from 30 MK down to 1 MK modeled from Yohkoh, GOES, and TRACE observations during the Bastille Day Event (14 July 2000). Sol Phys 204, 91–120 (2001). https://doi.org/10.1023/A:1014257826116

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014257826116

Keywords

Navigation