Skip to main content
Log in

Influence of Radiation-Stimulated Grain-Boundary Segregation of Phosphorus on the Operational Properties of Nuclear-Reactor-Vessel Materials

  • Published:
Atomic Energy Aims and scope

Abstract

The main mechanisms of radiation embrittlement of reactor vessel materials are considered to be hardening of material as a result of the formation of matrix defects, for example, micropores and second-phase precipitates – copper and others, and a change in the cohesive strength of grain boundaries as a result of the segregation of surface-active impurities, primarily, phosphorus. The question of the degree to which the latter mechanism affects the change in the properties of reactor-vessel materials under irradiation remains open. In the present paper, computational estimates of the kinetics of radiation-stimulated segregation of phosphorus on grain boundaries in reactor-vessel materials and the resulting changes in the mechanical characteristics of steel are compared with corresponding experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Yu. R. Kevorkyan, Yu. A. Nikolaev, and A. V. Nikolaeva, “Effect of cascade micropores on diffusion fluxes of point defects in reactor-vessel materials,” At. Énerg., 86, No. 5, 370-383 (1999).

    Google Scholar 

  2. G. Odette, “On the dominant mechanism of irradiation embrittlement of reactor pressure vessel steels,” Scripta Metall., 17, 1183-1188 (1983).

    Google Scholar 

  3. Yu. A. Nikolaev, A. V. Nikolaeva, O. O. Zabusov, et al., “Radiation-and heat-induced adsorption of phosphorus and grain boundaries in low-alloy steel,” Fiz. Met. Metalloved., 81, No. 1, 120-128 (1996).

    Google Scholar 

  4. A. V. Nikolaeva, Yu. A. Nikolaev, and A. M. Kryukov, “Grain boundary embrittlement due to reactor pressure annealing,” J. Nucl. Mater., 211, 236-243 (1994).

    Google Scholar 

  5. Yu. A. Nikolaev and A. V. Nikolaeva, “Embrittlement of low-alloy steels due to impurity segregation and intergranular boundaries,” Material Sci. Forum, 207-209, 653-656 (1996).

    Google Scholar 

  6. L. M. Utevskii, E. É. Glikman, and G. S. Kark, Reversible Temper Brittleness of Steel and Iron Alloys,Metallurgiya, Moscow (1987).

    Google Scholar 

  7. A. V. Nikolaeva, Yu. R. Kevorkyan, and Yu. A. Nikolaev, “Comparison of observed and predicted data on radiation induced grain boundary phosphorus segregation in VVER type steels,” in: 19th International Symposium on Effects of Radiation on Materials, ASTM STP 1366, American Society for Testing and Materials, West Conshohochen, PA (2000), pp. 399-411.

    Google Scholar 

  8. Yu. I. Zvezdin,Yu. A. Nikolaev, and D. M. Shur, “Method for investigating grain-boundary phosphorus segregation in low-alloy steel and its influence on the resistance to brittle fracture,” Zavod. Lab., No. 2, 61-63 (1993).

  9. P. L. Gruzin and V. V. Mural', “Mechanism of the influence of molybdenum on reversible temper brittleness of steel,” Metalloved. Termoobrabot., No. 3, 70-72 (1969).

    Google Scholar 

  10. P. L. Gruzin and V. V. Mural', “Influence of alloying on phosphorus diffusion in ferrite,” Fiz. Met. Metalloved., 17, 384-389 (1964).

    Google Scholar 

  11. A. V. Nikolaeva, Yu. A. Nikolaev, and Yu. R. Kevorkyan, “Grain-boundary segregation of phosphorus in low-alloy steel,” At. Énerg., 91, No. 1, 20-27 (2001).

    Google Scholar 

  12. D. McLean, Grain Boundaries in Metals [Russian translation], Metallurgizdat, Moscow (1960).

    Google Scholar 

  13. M. Miller, R. Jayaram, and K. Russell. “Characterization of phosphorus segregation in neutron-irradiated Russian pressure vessel steel weld,” J. Nucl. Mater., 225, 215-224 (1995).

    Google Scholar 

  14. M. Hashimoto, Y. Ishida, R. Yamamoto, and M. Doyama, “Atomic studies of grain boundary segregation in Fe-P and Fe-B alloy,” Acta Met., 32, No. 1, 1-11 (1984).

    Google Scholar 

  15. M. Hashimoto, Y. Ishida, R. Yamamoto, et al., “Transformation of the grain boundary structure by phosphorus segregation,” Scripta Metallurgica, 16, No. 3, 267-270 (1982).

    Google Scholar 

  16. A. Ucisik, C. McMahon, and H. Feng, “The influence of intercritical heat treatment on the temper embrittlement of rotor steels,” Met. Trans., 9A, No. 3, 321-329 (1978).

    Google Scholar 

  17. G. Spink, “Reversible temper embrittlement of rotor steels,” ibid., 8A, No. 1, 135-143 (1977).

    Google Scholar 

  18. R. Fowler and E. Guggenheim, Statistical Thermodynamics, Interscience Publishers, Cambridge (1960).

    Google Scholar 

  19. M. Guttmann, “The role of residuals and alloy elements in temper embrittlement,” Phil. Trans. Roy. Soc., 295A, 169-196 (1980).

    Google Scholar 

  20. M. Seah, “Grain boundary segregation and the T-t dependence of temper brittleness,” Acta Met., 25, No. 3, 345-357 (1977).

    Google Scholar 

  21. G. S. Kark, “Effect of phosphorus concentration in perlite steel on grain-boundary impurity maximum of the internal friction,” Trudy TsNIITmasha, No. 178, 23-34 (1983).

    Google Scholar 

  22. M. Guttmann, “The link between equilibrium segregation and the precipitation in ternary solutions exhibiting temper embrittlement,” Metal Sci, No. 10, 337-341 (1976).

    Google Scholar 

  23. A. V. Nikolaeva, Yu. A. Nikolaev, and A. M. Kryukov, “Contribution of grain boundary effects to low-alloy steel irradiation embrittlement,” J. Nucl. Mater., 218, 85-83 (1994).

    Google Scholar 

  24. A. V. Nikolaeva, Yu. R. Kevorkyan, and Yu. A. Nikolaev, “Radiation inducted grain boundary phosphorus segregation in low alloy Cr-Ni-Mo steels,” in: Proceedings of IAEA on Irradiation Embrittlement and Mitigation, IWG-LMNPP-99/2 (1999), pp. 294-405.

  25. P. A. Platonov, V. F. Krasnoshtanov, and Yu. R. Kevorkyan, “Simulation of formation and annealing of defects in regions of damage due to collision cascades in α iron,” At. Énerg., 39, No. 4, 260-264 (1975).

    Google Scholar 

  26. M. Finnis and J. Sinclair, “A simple empirical Ni-body potential for transition metals,” Phil. Mag., 50A, No. 1, 45-55 (1984).

    Google Scholar 

  27. H. Huntington, in: Solid State Physics, Vol. 7, F. Seitz and D. Turnbull (eds.), Academic Press, NY, (1984).

    Google Scholar 

  28. G. I. Samsonov, I. F. Pryadko, and L. F. Pryadko, Configuration Model of Matter, Naukova Dumka, Kiev (1971).

    Google Scholar 

  29. B. S. Bokshtein, S. Z. Bokshtein, and A. A. Zhukhovitskii, Thermodynamics and Kinetics of Diffusion in Solids [Russian translation], Mir, Moscow (1971).

    Google Scholar 

  30. M. Oikawa, Review of Lattice Diffusion of Substitutional Impurity in Iron, A Summary Report, Technology Reports, Tohoku University (1982), Vol. 47, pp. 214-224.

  31. R. Stoller, “Pressure vessel embrittlement predictions based on a composite model of copper precipitation and point defect clustering,” in: Effects of Radiation on the Materials, ASTM STP 1270 (1996), pp. 25-58.

  32. E. Simonen, “Predicted irradiation effects on alloy aging kinetics,” in: Proceedings of International Conference onNuclear Power Plant, Aging, Availability Reactor and Reliability Analysis, San Diego, USA (1985), pp. 157-164.

  33. J. Gibson, A. Goland, M. Milgram, and G. Vineyared, “Dynamics of radiation damage,” Phys. Rev., 120, No. 6, 1229-1253 (1960).

    Google Scholar 

  34. E. Mikhlin and V. Nelaev, “On the increase of the Frenkel defect recombination zone in α-iron caused by hydrostatic compression,” Phys. Stat. Solidi (a), 35, No. 1, K81-K84 (1976).

    Google Scholar 

  35. R. Jonson, “Point defect calculation for a fcc lattice,” Phys. Rev., 145, No. 2, 423-433 (1966).

    Google Scholar 

  36. K. Schroeder and K. Dettmann, “Diffusion reactions in long-range potentials,” Z. Physik B, 22, No. 2, 343-350 (1975).

    Google Scholar 

  37. T. Woite, “Theoretical treatment of the kinetics of diffusion-limited reactions,” Phys. Rev., 107, No. 2, 463-470 (1957).

    Google Scholar 

  38. D. Becher, F. Dworschak, and H. Wollenberger, “Analysis of point-defect states in copper,” Phys. Stat. Solidi (b), 54, No. 2, 455-462 (1972).

    Google Scholar 

  39. R. Lennartz, F. Dworschak, and H. Wollenberger, “Frenkel pair recombination radius in copper as a function of temperature,” J. Phys. F, 7, No. 11, 2011-2019 (1977).

    Google Scholar 

  40. J. Dural, J. Ardoncean, and J. Josset, “Endommagement du fer par irradiation aux electrons a 20 K,” J. Physique, 38, No. 8, 1007-1011 (1977).

    Google Scholar 

  41. A. M. Shalaev, Radiation-Stimulated Diffusion in Metals, Atomizdat, Moscow (1972).

    Google Scholar 

  42. V. A. Pechenkin, “On segregation on grain boundaries under irradiation of multicomponent alloys,” Preprint FÉI-2788 (1999).

  43. D. Briggs and M. Seach (eds.), Practical Surface Analysis by Auger and x-Ray Photoelectron Spectroscopy, New York (1983).

  44. A. V. Nikolaeva, Yu. A. Nikolaev, Yu. R. Kevorkyan, et al., “Embrittlement of low-alloy structural steel as a result of neutron irradiation,” At. Énerg., 88, No. 4, 271-276 (2000).

    Google Scholar 

  45. Yu. A. Nikolaev, A. V. Nikolaeva, A. M. Kryukov, et al., “Radiation embrittlement of VVER-1000 RPB steels,” in: Aging Materials Evaluation and Studies (AMES) Workshop on RPB Life Predictions, Madrid, Spain (November 2, 1989), pp. 35-44.

  46. J. A. Hudson, S. G. Druce, G. Gage, and M. Wall, “Thermal aging effects in structural steels,” Theoretical and Application Fracture Mechanics, 10, 123-133 (1988).

    Google Scholar 

  47. B. A. Gurovich, A. I. Ryazanov, L. A. Elesin, et al., “Motion of dislocations in stainless during fast neutron irradiation,” ASTM STP, 570, 599-618 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolaeva, A.V., Nikolaev, Y.A., Kevorkyan, Y.R. et al. Influence of Radiation-Stimulated Grain-Boundary Segregation of Phosphorus on the Operational Properties of Nuclear-Reactor-Vessel Materials. Atomic Energy 91, 884–895 (2001). https://doi.org/10.1023/A:1014257605632

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014257605632

Keywords

Navigation