Journal of Low Temperature Physics

, Volume 126, Issue 5–6, pp 1515–1528 | Cite as

Mutual Friction in Superfluid 4He Near the λ-Line

  • K. Kuehn
  • G. Ahlers


We present experimental results for the thermal resistivity ρ of superfluid 4He along several isobars between saturated vapor pressure and the melting pressure. The measurements are for the temperature range 1−Tc(q)/Tλ<t<2×10−5 and the heat-flux range 3<q<70 μW/cm2. Here t≡1−T/Tλ, Tλ is the transition temperature in the limit of zero q, and T c is the transition temperature at finite q. The data suggest that the resistivity has an incipient singularity at Tλ which can be described by the power law ρ=(t/t0)−(mν+α) where t0=(q/q0) x . However, the singularity is supplanted by the transition to a more highly dissipative phase at Tc(q)<Tλ. The results suggest a mild dependence of mν+α on the pressure P, but can be described quite well by mν+α=2.76, x=0.89, and q0=q0, 0q0, 1P with q0, 0=401Wċcm−2 and q0, 1=−5.0Wċcm−2bars−1. The results imply that the Gorter–Mellink mutual friction exponent m has a value close to 3.46 and is distinctly larger than the classical value m=3.


Transition Temperature Vapor Pressure Magnetic Material Thermal Resistivity Saturated Vapor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Baddar, G. Ahlers, K. Kuehn, and H. Fu, J. Low Temp. Phys. 119, 1 (2000).Google Scholar
  2. 2.
    C. J. Gorter and J. H. Mellink, Physica 15, 285 (1949).Google Scholar
  3. 3.
    W. F. Vinen, Proc. Roy. Soc. (London) A 242, 493 (1957).Google Scholar
  4. 4.
    L. E. de Long, O. G. Symko, and J. C. Wheatley, Rev. Sci. Instrum. 42, 147 (1971).Google Scholar
  5. 6.
    H. Fu, H. Baddar, K. Kuehn, M. Larson, N. Mulders, A. Schegolev, and G. Ahlers, J. Low Temp. Phys. 111, 49 (1998).Google Scholar
  6. 8.
    K. H. Müller, G. Ahlers, and F. Pobell, Phys. Rev. B 14, 2096 (1976).Google Scholar
  7. 9.
    V. Steinberg and G. Ahlers, J. Low Temp. Phys. 53, 255 (1983).Google Scholar
  8. 10.
    G. C. Straty and E. D. Adams, Rev. Sci. Instrum. 40, 1393 (1969). The particular version used in our work was very similar to the melting-pressure thermometer described by L. S. Goldner, N. Mulders, and G. Ahlers, in Temperature: Its Measurement and Control in Science and Industry, Vol. 6, J. F. Schooly (ed.), American Institute of Physics, N.Y. (1992), pp. 113–116.Google Scholar
  9. 11.
    A more detailed discussion of the proposed fitting function is given in G. Ahlers, K. Kuehn, and H. Fu, J. Low Temp. Phys. 119, 1 (2000) Ref. 1}.Google Scholar
  10. 12.
    G. Ahlers, Phys. Rev. Lett. 22, 54 (1969).Google Scholar
  11. 13.
    W. Y. Tam and G. Ahlers, Phys. Rev. B 32, 5932 (1985); 33, 183 (1986).Google Scholar
  12. 14.
    P. Leiderer and F. Pobell, J. Low Temp. Phys. 3, 577 (1970).Google Scholar
  13. 15.
    J. T. Tough, Superfluid turbulence, in Prog. Low Temp. Phys. VIII, D. F. Brewer (ed.), North Holland, Amsterdam (1982), Chap. 3.Google Scholar
  14. 16.
    R. J. Donnelly, Quantized Vortices in Hell, Cambridge University Press (1991); J. Phys. Cond. Matter 11, 7783 (1999); and J. Phys.: Condens. Matter 11, 7783 (1999).Google Scholar
  15. 17.
    R. Haussmann, Phys. Rev. B 60, 12349 (1999).Google Scholar
  16. 18.
    C. E. Swanson and R. J. Donnelly, J. Low Temp. Phys. 61, 363 (1985) (see also Ref. 16).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • K. Kuehn
    • 1
  • G. Ahlers
    • 1
  1. 1.Department of Physics and Quantum InstituteUniversity of CaliforniaSanta BarbaraU.S.A

Personalised recommendations