Skip to main content
Log in

Dissipative and Hamiltonian Systems with Chaotic Behavior: An Analytic Approach

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Some classes of dissipative and Hamiltonian distributed systems are described. The dynamics of these systems is effectively reduced to finite-dimensional dynamics which can be “unboundedly complex” in a sense. Yarying the parameters of these systems, we can obtain an arbitrary (to within the orbital topological equivalence) structurally stable attractor in the dissipative case and an arbitrary polynomial weakly integrable Hamiltonian in the conservative case. As examples, we consider Hopfield neural networks and some reaction–diffusion systems in the dissipative case and a nonlinear string in the Hamiltonian case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. A. Vakulenko, Ann. Inst. H. Poincaré, 66, 373 (1997).

    Google Scholar 

  2. S. A. Vakulenko, Adv. Diff. Equat., 5, 1739 (2000).

    Google Scholar 

  3. G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order Through Fluctuations, Wiley, New York (1977).

    Google Scholar 

  4. H. Haken, Synergetics: An Introduction (3rd ed.), Springer, Berlin (1983).

    Google Scholar 

  5. Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer, Berlin (1984).

    Google Scholar 

  6. O. A. Ladyzhenskaya, Russ. Math. Surv., 42, 27 (1987).

    Google Scholar 

  7. J. K. Hale, Asymptotic Behavior of Dissipative Systems, Am. Math. Soc., Providence, R.I. (1988).

    Google Scholar 

  8. A. B. Babin and M. I. Vishik, J. Math. Pures Appl., 62, 441 (1983).

    Google Scholar 

  9. P. Constantin, C. Foias, B. Nicolaenko, and R. Temam, Integrable Manifolds and Inertial Manifolds for Dissipative Differential Equations, Springer, New York (1989).

    Google Scholar 

  10. Yu. Il'yashenko and Weigu Li, Nonlocal Bifurcations [in Russian], Moscow Center for Continuous Mathematical Education (MCCME), Moscow (1999); English transl., Am. Math. Soc., Providence, R.I. (1999).

    Google Scholar 

  11. P. Poláčik, J. Diff. Equat., 119, 24 (1995).

    Google Scholar 

  12. E. N. Dancer and P. Poláčik, Mem. Am. Math. Soc., 140, No. 668, 1 (1999).

    Google Scholar 

  13. J. J. Hopfield, Proc. Natl. Acad. Sci., 79, 2554 (1982).

    Google Scholar 

  14. R. Edwards, Math. Meth. Appl. Sci., 19, 651 (1996).

    Google Scholar 

  15. G. M. Zaslavskii, R. Z. Sagdeev, D. A. Usikov, and A. A. Chernikov, Sov. Phys. Usp., 31, 887 (1989).

    Google Scholar 

  16. N. V. Nikolenko, Russ. Math. Surv., 35, 139 (1980).

    Google Scholar 

  17. J. Bourgain, “Nonlinear Schrödinger equations,” in: Hyperbolic Equations and Frequency Interactions (IAS/ PARC City Math. Ser., Vol. 5, L. Caffarelli et al., eds.), Am. Math. Soc., Providence, R.I. (1999), p. 3.

    Google Scholar 

  18. A. K. Abramyan, J. Tech. Acoustic, 2, No. 3, 5 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abramyan, A.K., Vakulenko, S.A. Dissipative and Hamiltonian Systems with Chaotic Behavior: An Analytic Approach. Theoretical and Mathematical Physics 130, 245–255 (2002). https://doi.org/10.1023/A:1014243500528

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014243500528

Keywords

Navigation