Skip to main content
Log in

Integrability of the Equations for Nonsingular Pairs of Compatible Flat Metrics

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We solve the problem of describing all nonsingular pairs of compatible flat metrics (or, in other words, nonsingular flat pencils of metrics) in the general N-component case. This problem is equivalent to the problem of describing all compatible Dubrovin–Novikov brackets (compatible nondegenerate local Poisson brackets of hydrodynamic type) playing an important role in the theory of integrable systems of hydrodynamic type and also in modern differential geometry and field theory. We prove that all nonsingular pairs of compatible flat metrics are described by a system of nonlinear differential equations that is a special nonlinear differential reduction of the classical Lamé equations, and we present a scheme for integrating this system by the method of the inverse scattering problem. The integration procedure is based on using the Zakharov method for integrating the Lamé equations (a version of the inverse scattering method).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. O. I. Mokhov, “Compatible and almost compatible pseudo-Riemannian metrics,” math.DG/0005051 (2000).

  2. V. E. Zakharov, Duke Math. J., 94, 103–139 (1998).

    Google Scholar 

  3. B. Dubrovin, “Geometry of 2D topological field theories,” in: Integrable Systems and Quantum Groups. (Lect. Notes Math., Vol. 1620, M. Francaviglia and S. Greco, eds.), Springer, Berlin (1996), pp. 120–348; hepth/ 9407018 (1994).

    Google Scholar 

  4. B. Dubrovin, “Differential geometry of the space of orbits of a Coxeter group,” Preprint SISSA-29/93/FM, SISSA, Trieste (1993); hep-th/9303152 (1993).

    Google Scholar 

  5. B. Dubrovin, “Flat pencils of metrics and Frobenius manifolds,” Preprint SISSA 25/98/FM, SISSA, Trieste (1998); math.DG/9803106 (1998).

    Google Scholar 

  6. E. V. Ferapontov, “Nonlocal Hamiltonian operators of hydrodynamic type: differential geometry and applications,” in: Topics in Topology and Mathematical Physics (S. P. Novikov, ed.), Am. Math. Soc., Providence, R.I. (1995), pp. 33–58.

    Google Scholar 

  7. O. I. Mokhov, Russ. Math. Surv., 52, 1310-1311 (1997).

    Google Scholar 

  8. O. I. Mokhov, Russ. Math. Surv., 53, 396–397 (1998).

    Google Scholar 

  9. O. I. Mokhov, Proc. Steklov Math. Inst., 225, 269–284 (1999).

    Google Scholar 

  10. O. I. Mokhov, Rep. Math. Phys., 43, No. 1/2, 247–256 (1999).

    Google Scholar 

  11. O. I. Mokhov and E. V. Ferapontov, Russ. Math. Surv., 45, 218–219 (1990).

    Google Scholar 

  12. E. V. Ferapontov, Funct. Anal. Appl., 25, 195–204 (1991).

    Google Scholar 

  13. E. V. Ferapontov, J. Sov. Math., 55, 1970–1995 (1991).

    Google Scholar 

  14. O. I. Mokhov, Phys. Lett. A, 166, 215–216 (1992).

    Google Scholar 

  15. O. I. Mokhov and E. V. Ferapontov, Funct. Anal. Appl., 28, 123–125 (1994).

    Google Scholar 

  16. O. I. Mokhov, Russ. Math. Surv., 53, 515–622 (1998).

    Google Scholar 

  17. B. A. Dubrovin and S. P. Novikov, Sov. Math. Dokl., 27, 665–669 (1983).

    Google Scholar 

  18. B. A. Dubrovin and S. P. Novikov, Russ. Math. Surv., 44, 35–124 (1989).

    Google Scholar 

  19. F. Magri, J. Math. Phys., 19, No. 5, 1156–1162 (1978).

    Google Scholar 

  20. I. M. Gelfand and I. Ya. Dorfman, Funct. Anal. Appl., 13, 246-262 (1979).

    Google Scholar 

  21. B. Fuchssteiner, Nonlinear Anal. Theor. Meth. Appl., 3, 849–862 (1979).

    Google Scholar 

  22. A. S. Fokas and B. Fuchssteiner, Lett. Nuovo Cimento, 28, No. 8, 299–303 (1980).

    Google Scholar 

  23. P. Olver, Applications of Lie Groups to Di.erential Equations, Springer, New York (1986).

    Google Scholar 

  24. I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations, Wiley, Chichester, England (1993).

    Google Scholar 

  25. O. I. Mokhov, Russ. Math. Surv., 40, 233–234 (1985).

    Google Scholar 

  26. O. I. Mokhov, Funct. Anal. Appl., 21, 217–223 (1987).

    Google Scholar 

  27. D. B. Cooke, J. Math. Phys., 32, 109–119 (1991).

    Google Scholar 

  28. D. B. Cooke, J. Math. Phys., 32, 3071–3076 (1991).

    Google Scholar 

  29. C. S. Gardner, J. Math. Phys., 12, 1548–1551 (1971).

    Google Scholar 

  30. V. E. Zakharov and L. D. Faddeev, Funct. Anal. Appl., 5, 280–287 (1971).

    Google Scholar 

  31. Y. Nutku, J. Math. Phys., 28, 2579–2585 (1987).

    Google Scholar 

  32. P. Olver and Y. Nutku, J. Math. Phys., 29, 1610–1619 (1988).

    Google Scholar 

  33. M. Arik, F. Neyzi, Y. Nutku, P. J. Olver, and J. M. Verosky, J. Math. Phys., 30, 1338–1344 (1989).

    Google Scholar 

  34. F. Neyzi, J. Math. Phys., 30, 1695–1698 (1989).

    Google Scholar 

  35. H. Gümral and Y. Nutku, J. Math. Phys., 31, 2606–2611 (1990).

    Google Scholar 

  36. E. V. Ferapontov and M. V. Pavlov, Physica D, 52, 211–219 (1991).

    Google Scholar 

  37. A. Nijenhuis, Indagationes Math., 13, No. 2, 200–212 (1951).

    Google Scholar 

  38. A. Haantjes, Indagationes Math., 17, No. 2, 158–162 (1955).

    Google Scholar 

  39. G. Darboux, Leçons sur les systèmes orthogonaux et les coordonnèes curvilignes (2nd ed.), Gauthier-Villars, Paris (1910).

    Google Scholar 

  40. E. Cartan, Les systems differentiels exterieurs et leurs applications geometriques, Hermann, Paris (1945).

    Google Scholar 

  41. L. Bianchi, Opere, Vol. 3, Sistemi tripli orthogonali, Edizioni Cremonese, Roma (1955).

    Google Scholar 

  42. I. M. Krichever, Funct. Anal. Appl., 31, 25–39 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mokhov, O.I. Integrability of the Equations for Nonsingular Pairs of Compatible Flat Metrics. Theoretical and Mathematical Physics 130, 198–212 (2002). https://doi.org/10.1023/A:1014235331479

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014235331479

Keywords

Navigation