Skip to main content
Log in

Conservation genetics of the loggerhead shrike (Lanius ludovicianus) in central and eastern North America

  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

This study examines geneticstructure of central and eastern North American Loggerhead Shrike (Lanius ludovicianus)populations. Samples derived from 27populations (n = 206) covering the range of threerecognized subspecies: L. l. migrans,L. l. ludovicianus, and L. l.excubitorides, and included locales from aputative intergrade zone between twosubspecies. For L. l. migrans, samplesinclude both those from extant populations andfrom museum specimens spanning approximately130 years. For all samples we obtained 267 basepairs of mitochondrial control region sequenceand identified a total of 23 distincthaplotypes. For a subset of samplesrepresenting a locale centered on the Canadianportion of an intergrade zone between migrans and excubitorides and locales onalternate sides of the intergrade, we obtainedadditional sequence for an intron of thenuclear glyceraldehyde-3-phosphatedehydrogenase gene. Analyses of temporal trendsin control region diversity of L. l.migrans populations indicate a diminutioncoincident with the decline in populationnumbers. Results from an Analysis of MolecularVariance on the control region data showed thata significant amount of total control regionspatial variation was apportioned among thethree subspecies (24.42%; P < 0.01). Furtheranalyses indicated statistically significantdifferences between eastern and westernpopulations of L. l. migrans. We found nosignificant differences among consideredpopulations in frequencies of six identifiedGpdh alleles, although this result ispreliminary because of small sample sizes.However, both the mitochondrial and intron datasuggest a higher genetic diversity in theintergrade zone. Based on our analyses wedefine four management units for eastern andcentral populations of Loggerhead Shrikes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avise JC (1994) Molecular Markers, Natural History and Evolution. Chapman and Hall, New York.

    Google Scholar 

  • Baker C, Medrano-Gonzalez L, Calambokidis J, Perry A, Pichler F, Rosenbaum H, Straley JM, Urban-Ramirez J, Yamaguchi M, Von Ziegesar O (1998) Population structure of nuclear and mitochondrial DNA variation among Humpback Whales in the North Pacific. Mol. Ecol., 7, 695–707.

    Google Scholar 

  • Ball RM, Freeman S, James FC, Bermingham E, Avise JC (1988) Phylogeographic population structure of Red-winged Blackbirds assessed by mitochondrial DNA. Proc. Nat. Acad. Sci. USA, 85, 1558–1562.

    Google Scholar 

  • Ball RM, Avise JC (1992) Mitochondrial DNA phylogeographic differentiation among avian populations and the evolutionary significance of subspecies. Auk, 109, 626–636.

    Google Scholar 

  • Boyce WM, Ramey RR, Rodwell TC, Rubin ES, Singer RS (1999) Population subdivision among Desert Bighorn Sheep (Ovis canadensis) ewes revealed by mitochondrial DNA analysis. Mol. Ecol., 8, 99–106.

    Google Scholar 

  • Brooks BL, Temple SA (1990) Dynamics of a Loggerhead Shrike population in Minnesota. Wilson Bull., 102, 441–450.

    Google Scholar 

  • Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: Tempo and mode of evolution. J. Mol. Evol., 18, 225–239.

    Google Scholar 

  • Cade TJ, Woods CP (1997) Changes in distribution and abundance of the Loggerhead Shrike. Cons. Biol., 11, 21–31.

    Google Scholar 

  • Cadman MD (1985) Status Report on the Loggerhead Shrike (Lanius ludovicianus) in Canada. Unpublished report to the Committee on the Status of Endangered Wildlife in Canada

  • Cadman MD (1990) Updated Status Report on the Loggerhead Shrike (Eastern Populations) Lanius ludovicianus Migrans in Canada. Unpublished report to the Committee on the Status of Endangered Wildlife in Canada (COSEWIC). 17 pp.

  • Collister DM, De Smet K (1997) Breeding and natal dispersal in the Loggerhead Shrike. J. Field Ornithol., 68, 273–282.

    Google Scholar 

  • COSEWIC (1995) Canadian Species at Risk. Committee on the Status of Endangered Wildlife in Canada. Unpublished report. 16 pp.

  • Cuddy D (1995) Protection and restoration of breeding habitat for the Loggerhead Shrike (Lanius ludovicianus) in Ontario, Canada. Proc. Western Fdn. Vert. Zool., 6, 283–291.

    Google Scholar 

  • Edwards SV (1993) Mitochondrial gene genealogy and gene flow among island and mainland populations of a sedentary songbird, the Grey-crowned Babbler (Pomatostomus temporalis). Evolution, 47, 1118–1137.

    Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics, 131, 479–491.

    Google Scholar 

  • Fisher RA (1930) The Genetical Theory of Natural Selection. Clarendon Press, Oxford.

    Google Scholar 

  • Friesen VL, Congdon BC, Walsh HE, Birt TP (1997) Intron variation in Marbled Murrelets detected using analyses of singlestranded conformational polymorphisms. Mol. Ecol., 6, 1047–1058.

    Google Scholar 

  • Fry A, Zink RM (1998) Geographic analysis of nucleotide diversity and song sparrow (Aves: Emberizidae) population history. Mol. Ecol., 7, 1303–1313.

    Google Scholar 

  • Haas CA, Sloane SA (1989) Low return rates of migratory Loggerhead Shrikes: Winter mortality or low site fidelity? Wilson Bull., 101, 458–460.

    Google Scholar 

  • Haig SM, Avise JC (1996) Avian conservation genetics. In: Conservation Genetics: Case Studies from Nature (eds. Avise JC, Hamrick JL) pp. 160–189. Chapman Hall, New York.

    Google Scholar 

  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc., 58, 247–276.

    Google Scholar 

  • Kidd MG, Friesen VL (1998) Analysis of mechanisms of microevolutionary change in Cepphus guillemots using patterns of control region variation. Evolution, 52, 1158–1168.

    Google Scholar 

  • Kimura M(1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol., 16, 111–120.

    Google Scholar 

  • Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proc. Nat. Acad. Sci. USA, 86, 6196–6200.

    Google Scholar 

  • Lefranc N (1997) Shrikes. A Guide to the Shrikes of the World. Yale Univ. Press. New Haven, Connecticut.

    Google Scholar 

  • Lucchini V, Randi E (1998) Mitochondrial DNA sequence variation and phylogeographical structure of Rock Partridge (Aletoris graeca) populations. Heredity, 81, 528–536.

    Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res., 27, 209–220.

    Google Scholar 

  • Marshall HD, Baker AJ (1997) Structural conservation and variation in the mitochondrial control region of fringilline finches (Fringilla spp.) and the Greenfinch (Carduelis chloris). Mol. Biol. Evol., 14, 173–184.

    Google Scholar 

  • Miller AH (1931) Systematic revision and natural history of the American shrikes (Lanius). Univ. California Publ. Zool., 38, 11–242.

    Google Scholar 

  • Milligan BG, Leebans-Mack J, Strand AE (1994) Conservation genetics: Beyond the maintenance of marker diversity. Mol. Ecol., 3, 423–435.

    Google Scholar 

  • Moore WS, Graham JH, Price JT (1991) Mitochondrial DNA variation in the Northern Flicker (Colaptes aurates, Aves). Mol. Biol. Evol., 8, 327–344.

    Google Scholar 

  • Morrison ML (1981) Population trends of the Loggerhead Shrike in the United States. Am. Birds, 35, 754–757.

    Google Scholar 

  • Moritz C (1994) Applications of mitochondrial DNA analysis in conservation: A critical review. Mol. Ecol., 3, 401–411.

    Google Scholar 

  • Mundy NI, Unitt P, Woodruff DS (1997a) Skin from feet of museum specimens as a non-destructive source of DNA for avian genotyping. Auk, 114, 126–129.

    Google Scholar 

  • Mundy NI, Winchell CS, Burr T, Woodruff DS (1997b) Microsatellite variation and microevolution in the critically endangered San Clemente Island Loggerhead Shrike (Lanius ludovicianus mearnsi). Proc. Roy. Soc. Lond. B., 264, 869–875.

    Google Scholar 

  • Mundy NI, Winchell CS, Woodruff DS (1997c) Genetic differences between the endangered San Clemente Island Loggerhead Shrike Lanius ludovicianus mearnsi and two neighbouring subspecies demonstrated by mtDNA control region and cytochrome b sequence variation. Mol. Ecol., 6, 29–37.

    Google Scholar 

  • Nagata J, Masuda R, Kaji K, Kaneko M, Yoshida MC (1998) Genetic variation and population structure of the Japanese Sika Deer (Cervus nippon) in Hokkaido Island, based on mitochondrial D-loop sequences. Mol. Ecol., 7, 871–877.

    Google Scholar 

  • Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New York.

    Google Scholar 

  • Peterjohn BG, Sauer JR (1995) Population trends of the Loggerhead Shrike from the North American Breeding Bird Survey. Proc. Western Fdn. Vert. Zool. 6, 117–121.

    Google Scholar 

  • Prescott DRC, Collister DM (1993) Characteristics of occupied and unoccupied Loggerhead Shrike territories in southeastern Alberta. J. Wildl. Manag., 57, 346–352.

    Google Scholar 

  • Questiau S, Eybert MC, Gaginskaya AR, Gielly L, Taberlet P (1998) Recent divergence between two morphologically differentiated subspecies of Bluethroat (Aves: Muscicapidae: Luscinia svecica) inferred from mitochondrial DNA sequence variation. Mol. Ecol., 7, 239–245.

    Google Scholar 

  • Quinn TW (1992) The genetic legacy of Mother Goose – phylogeographic patterns of Lesser Snow Goose Chen caerulescens caerulescens maternal lineages. Mol. Ecol., 1, 105–117.

    Google Scholar 

  • Raymond M, Roussett F (1995) GENEPOP (version 3): Population genetics software for exact test and ecumenicism. J. Hered., 86, 248–249.

    Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43, 223–225.

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  • Sauer J, Schwartz S, Hoover B (1996) The Christmas Bird Count Home Page, Version 9.5.1 Patuxent Wildlife Research Center, Laurel, MD.

    Google Scholar 

  • Schneider S, Kueffer JM, Roessli D, Excoffier L (1997) Arlequin ver. 1.1: A software for population genetic data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland.

    Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123, 585–595.

    Google Scholar 

  • Thomas WK, Pääbo S, Villablanca FX, Wilson AC (1990) Spatial and temporal continuity of kangaroo rat populations shown by sequencing mitochondrial DNA from museum specimens. J. Mol. Evol., 31, 101–112.

    Google Scholar 

  • Van Wagner CE, Baker AJ (1990) Association between mitochondrial DNA and morphological evolution in Canada Geese. J. Mol. Evol., 31, 373–382.

    Google Scholar 

  • Wakeley J (1993) Substitution rate variation among sites in hypervariable region I of human mitochondrial DNA. J. Mol. Evol., 37, 613–623.

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358–1370.

    Google Scholar 

  • Wenink PW, Baker AJ, Rosner HU, Tilanus MGJ (1996) Global mitochondrial DNA phylogeography of holarctic breeding Dunlins (Calidris alpina). Evolution, 50, 318–330.

    Google Scholar 

  • Wilson AC, Cann RL, Carr SM, George M, Gyllensten UB, Helm-Bychowski KM, Higuchi RG, Palumbi SR, Prager EM, Sage RD, Stoneking m (1985) Mitochondrial DNA and two perspectives on evolutionary genetics. Biol. J. Linn. Soc., 26, 375–400.

    Google Scholar 

  • Woodruff DS (1979) Postmating reproductive isolation in Pseudophryne and the evolutionary significance of hybrid zones. Science, 203, 561–563.

    Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics, 28, 114–138.

    Google Scholar 

  • Wright S (1951) The genetical structure of populations. Annu. Rev. Eugen., 5, 323–354.

    Google Scholar 

  • Zink RM (1994) The geography of mitochondrial DNA variation, population structure, hybridization, and species limits in the Fox Sparrow (Passerella iliaca). Evolution, 48, 96–111.

    Google Scholar 

  • Zink RM (1996) Comparative phylogeography in North American birds. Evolution, 50, 308–317.

    Google Scholar 

  • Zink RM, Dittmann DL (1993a) Gene flow, refugia, and evolution of geographic variation in the song sparrow (Melospiza melodia). Evolution, 47, 717–729.

    Google Scholar 

  • Zink RM, Dittmann DL (1993b) Population structure and gene flow in the chipping sparrow and a hypothesis for evolution in the genus Spizella. Wilson Bull., 105, 399–413.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. Lougheed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vallianatos, M., Lougheed, S.C. & Boag, P.T. Conservation genetics of the loggerhead shrike (Lanius ludovicianus) in central and eastern North America. Conservation Genetics 3, 1–13 (2002). https://doi.org/10.1023/A:1014232326576

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014232326576

Navigation