Skip to main content
Log in

Intracellular Processing of Poly(Ethylene Imine)/Ribozyme Complexes Can Be Observed in Living Cells by Using Confocal Laser Scanning Microscopy and Inhibitor Experiments

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Critical steps in the subcellular processing of poly(ethylene imine)/nucleic acid complexes, especially endosomal/lysosomal escape, were visualized by using living cell confocal laser scanning microscopy (CSLM) to obtain an insight into their mechanism.

Methods. Living cell confocal microscopy was used to examine the intracellular fate of poly(ethylene imine)/ribozyme and poly(L-lysine)/ribozyme complexes over time, in the presence of and without bafilomycin A1, a selective inhibitor of endosomal/lysosomal acidification. The compartment of complex accumulation was identified by confocal microscopy with a fluorescent acidotropic dye. To confirm microscopic data, luciferase reporter gene expression was determined under similar experimental conditions.

Results. Poly(ethylene imine)/ribozyme complexes accumulate in acidic vesicles, most probably lysosomes. Release of complexes occurs in a sudden event, very likely due to bursting of these organelles. After release, poly(ethylene imine) and ribozyme spread throughout the cell, during which slight differences in distribution between cytosol and nucleus are visible. No lysosomal escape was observed with poly(L-lysine)/ribozyme complexes or when poly(ethylene imine)/ribozyme complexes were applied together with bafilomycin A1. Poly(ethylene imine)/plasmid complexes exhibited a high luciferase expression, which was reduced approximately 200-fold when lysosomal acidification was suppressed with bafilomycin A1.

Conclusions. Our data provide, for the first time, direct experimental evidence for the escape of poly(ethylene imine)/nucleic acid complexes from the endosomal/lysosomal compartment. CLSM, in conjunction with living cell microscopy, is a promising tool for studying the subcellular fate of polyplexes in nucleic acid/gene delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. T. Godbey, K. K. Wu, and A. G. Mikos. Poly(ethylenimine) and its role in gene delivery. J. Control. Release 60:149–160 (1999).

    Google Scholar 

  2. W. T. Godbey, M. A. Barry, P. Saggau, K. K. Wu, and A. G. Mikos. Poly(ethylenimine)-mediated transfection: a new paradigm for gene delivery. J. Biomed. Mater. Res. 51:321–328 (2000).

    Google Scholar 

  3. W. T. Godbey, K. K. Wu, and A. G. Mikos. Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery. Proc. Natl. Acad. Sci. USA 96:5177–5181 (1999).

    Google Scholar 

  4. M. Lecocq, S. Wattiaux-De Conink, N. Laurent, R. Wattiaux, and M. Jadot. Uptake and intracellular fate of polyethylenimine in vivo. Biochem Biophys. Res. Commun. 278:414–418 (2000).

    Google Scholar 

  5. A. R. Klemm, D. Young, and J. B. Lloyd. Effects of polyethyleneimine on endocytosis and lysosome stability. Biochem. Pharmacol. 56:41–46 (1998).

    Google Scholar 

  6. J. P. Behr. The proton sponge-a trick to enter cells the viruses did not exploit. Chimia 51:34–36 (1997).

    Google Scholar 

  7. H. Pollard, J. S. Remy, G. Loussouarn, S. Demolombe, J. P. Behr, and D. Escande. Polyethyleneimine, but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells. J. Biol. Chem. 273:7507–7511 (1998).

    Google Scholar 

  8. Y. Masuda, H. Kobayashi, J. F. Holland, and T. Ohnuma. Reversal Reversal of multidrug resistance by a liposome-MDR1 ribozyme complex. Cancer Chemother. Pharmacol. 42:9–16 (1998).

    Google Scholar 

  9. A. Aigner, S. S. Hsieh, C. Malerczyk, and F. Czubayko. Reversal of HER-2 over-expression renders human ovarian cancer cells highly resistant to taxol. Toxicology 144:221–228 (2000).

    Google Scholar 

  10. K. Konopka, J. J. Rossi, P. Swiderski, V. A. Slepushkin, and N. Duzgunes. Delivery of an anti-HIV-1 ribozyme into HIV-infected cells via cationic liposomes. Biochim. Biophys. Acta 1372:55–68 (1998).

    Google Scholar 

  11. H. D. Hill and J. G. Straka. Protein determination using bicinchoninic acid in the presence of sulfhydryl reagents. Anal. Biochem. 170:203–208 (1988).

    Google Scholar 

  12. A. Kichler, C. Leborgne, E. Coeytaux, and O. Danos. Polyethylenimine-mediated genedelivery: a mechanistic study. J Gene Med. 3:135–144 (2001).

    Google Scholar 

  13. P. Erbacher, A. C. Roche, M. Monsigny, and P. Midoux. Putative role of chloroquine in gene transfer into a human hepatoma cell line by DNA/lactosylated polylysine complexes. Exp. Cell. Res. 225:186–194 (1996).

    Google Scholar 

  14. M. A. Wolfert, P. R. Dash, O. Nazarova, D. Oupicky, L. W. Seymour, S. Smart, J. Strohalm, and K. Ulbrich. Polyelectrolyte vectors for gene delivery: influence of cationic polymer on biophysical properties of complexes formed with DNA. Bioconjug. Chem. 10:993–1004 (1999).

    Google Scholar 

  15. M. A. Wolfert, E. H. Schacht, V. Toncheva, K. Ulbrich, O. Nazarova, and L. W. Seymour. Characterization of vectors for gene therapy formed by self-assembly of DNA with synthetic block co-polymers. Hum. Gene Ther. 7:2123–2133 (1996).

    Google Scholar 

  16. E. Wagner, C. Plank, K. Zatloukal, M. Cotton, and M. L. Birnstiel. Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes: toward a synthetic virus-like gene-transfer vehicle. Proc. Natl. Acad. Sci. USA 89:7934–7938 (1992).

    Google Scholar 

  17. C. Pichon, M. B. Roufai, M. Monsigny, and P. Midoux. Histidylated oligolysines increase the transmembrane passage and the biological activity of antisense oligonucleotides. Nucleic Acids Res. 28:504–512 (2000).

    Google Scholar 

  18. D. Putnam, C. A. Gentry, D. W. Pack, and R. Langer. Polymer-based gene delivery with low cytotoxicity by a unique balance of side-chain termini. Proc. Natl. Acad. Sci. USA 98:1200–1205 (2001).

    Google Scholar 

  19. D. W. Pack, D. Putnam, and R. Langer. Design of imidazole-containing endosomolytic biopolymers for gene delivery. Biotechnol. Bioeng. 67:217–223 (2000).

    Google Scholar 

  20. P. Midoux and M. Monsigny. Efficient gene transfer by histidylated polylysine/pDNA complexes. Bioconjug. Chem. 10:406–411 (1999).

    Google Scholar 

  21. J. Haensler and F. C. Szoka. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug. Chem. 5:372–379 (1993).

    Google Scholar 

  22. Z. Y. Zhang and B. D. Smith. High-generation polycationic dendrimers are unusually effective at disrupting anionic vesicles: membrane bending model. Bioconjug. Chem. 11:805–814 (2000).

    Google Scholar 

  23. M. X. Tang, C. T. Redemann, and F. C. Szoka Jr. In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug. Chem. 7:703–714 (1996).

    Google Scholar 

  24. B. Sola, C. Staedel, J. S. Remy, A. Bahr, and J. P. Behr. Lipospermine-mediated gene transfer technique into murine cultured cortical cells. J. Neurosci. Methods 71:183–186 (1997).

    Google Scholar 

  25. P. van de Wetering, E. E. Moret, N. M. Schuurmans-Nieuwenbroek, M. J. van Steenbergen, and W. E. Hennink. Structure-activity relationships of water-soluble cationic methacrylate/ methacrylamide polymers for nonviral gene delivery. Bioconjug. Chem. 10:589–597 (1999).

    Google Scholar 

  26. Y. Xu and F. Szoka Jr. Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry 35:5616–5623 (1996).

    Google Scholar 

  27. U. T. Brunk, H. Dalen, K. Roberg, and H. B. Hellquist. Photooxidative disruption of lysosomal membranes causes apoptosis of cultured human fibroblasts. Free Radic. Biol. Med. 23:616–626 (1997).

    Google Scholar 

  28. B. Talcott and M. S. Moore. Getting across the nuclear pore complex. Trends Cell Biol. 9:312–318 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Kissel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merdan, T., Kunath, K., Fischer, D. et al. Intracellular Processing of Poly(Ethylene Imine)/Ribozyme Complexes Can Be Observed in Living Cells by Using Confocal Laser Scanning Microscopy and Inhibitor Experiments. Pharm Res 19, 140–146 (2002). https://doi.org/10.1023/A:1014212630566

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014212630566

Navigation