Abstract
The structural and oxygen binding properties of Acipenser naccarii blood have been investigated. The electrophoretic analysis of the hemolysate of this sturgeon showed the presence of two hemoglobin components, each with a considerable globin multiplicity. Constituent globin chains were analyzed by urea-Triton acid polyacrylamide gel electrophoresis and isolated by high performance liquid chromatography. N-terminal amino acid sequence analysis revealed the presence of a N-terminal proline in two of the three α-chains present in the globin pattern, and the presence of a histidine residue in 2βposition. Oxygen equilibria reveal a very low sensitivity of the individual hemoglobins to chloride ions and temperature; however, in the presence of organic phosphates the oxygen affinity of the hemoglobin components decreases strongly. In particular, when Guanosine-5-triphosphate (GTP) is added, the reduction of the oxygen affinity, at pH 7.4 and 20 °C, is 60% and 50%, respectively, for HbI (anodic component) and HbII (cathodic component). As the effect of protons is concerned, the small Root effect shown by total hemolysate at physiological conditions, seems to be due mainly to the cathodic component. On the whole, the functional properties shown by sturgeon hemoglobin components seem to be related to the particular physiological needs dictated by the environmental characteristics.
This is a preview of subscription content, access via your institution.
References
Albers, C., Manz, R., Muster, D. and Hughes, G.M. 1983. Effect of acclimation temperature on oxygen transport in the blood of the carp, Cyprinus carpio. Resp. Physiol. 52: 165–179.
Alter, B.P., Goff, S.C. Efremov, G.D. Gravely, M.E. and Huisman T.H.J. 1980. Globin chain electrophoresis: a new approach to the determination of the G gamma/A gamma ratio in fetal haemoglobin and to studies of globin synthesis. British J. Haematol. 44: 527–534.
Andersen, N.A., Laursen, J.S. and Lykkeboe, G. 1985. Seasonal variations in hematocrit, red cell hemoglobin and nucleoside triphosphate concentrations, in the European eel Anguilla anguilla. Comp. Biochem. Physiol. A. 81: 87–92.
Barra, D., Bossa, F. and Brunori, M. 1981. Structure of binding sites for heterotropic effectors in fish haemoglobins. Nature 293: 587–588.
Binotti, I., Giovenco, S., Giardina, B., Antonini, E., Brunori, M. and Wyman, J. 1971. Studies on the functional properties of fish hemoglobins. II. The oxygen equilibrium of the isolated hemoglobin components from trout blood. Arch. Biochem. Biophys. 142: 274–280.
Bonaventura, J., Bonaventura, C. and Sullivan, B. 1975. Hemoglobins and hemocyanins: comparative aspects of structure and function. J. Exp. Zool. 194: 155–174.
Brittain, T. 1987. The Root effect. Comp. Biochem. Physiol. 86: 473–481. Cepreganova, B., Wilson, J.B., Webber, B.B., Kjovkareska, B., Efremov, G.D. and Huisman, T.H. 1992. Heterogeneity of the hemoglobin of the Ohrid trout (Salmo L. typicus). Biochem. Genet. 30: 385–399.
Farmer, M., Fyhnn, H.J., Fyhnn, U.E.H. and Noble, R.W. 1979. Occurrence of Root effect in haemoglobin in Amazonian fishes. Comp. Biochem. Physiol. 62A: 115–124.
Fermi, G., Perutz, M.F., Shaanan, B., Fourme, R. 1984. The crystal structure of human deoxyhaemoglobin at 1.74 A resolution. J. Mol. Biol. 175: 159–174.
Fourie, F.R. and Van Vuren, J.H. 1976. A seasonal study on the hemoglobins of carp (Cyprinus carpio) and yellowfish (Barbus holubi) in South Africa. Comp. Biochem. Physiol. B. 55: 523–525.
Giardina, B. and Amiconi, G. 1981. Measurement of binding of gaseous and nongaseous ligands to hemoglobins by conventional spectrophotometric procedures. Meth. Enzymol. 76: 417–427.
Gillen, R.G. and Riggs, A. 1972. Structure and function of the hemoglobins of the carp, Cyprinus carpio. J. Biol Chem. 247: 6039–6046.
Gronenborn, A.M., Clore, G.M., Brunori, M., Giardina, B., Falcioni, G. and Perutz, M.F. 1984. Stereochemistry of ATP and GTP bound to fish haemoglobins. A transferred nuclear overhauser enhancement, 31P-nuclear magnetic resonance, oxygen equilibrium and molecular modelling study. J. Mol. Biol. 78: 731–742.
Harrington, J.P. 1986. Structural and functional studies of the king salmon, Oncorhynchus tshawytscha, hemoglobins. Comp. Biochem. Physiol. 84: 111–116.
Hombrados, I., Vidal, Y., Rodewald, K., Braunitzer, G. and Neuzil, E. 1991. The primary structure of the hemoglobins of a southern hemisphere lamprey (Mordacia mordax, Cyclostomata). Biol. Chem. Hoppe-Seyler 372: 45–56.
Kleinschmidt, T. and Sgouros, J.G. 1987. Hemoglobin sequences. Biol. Chem. Hoppe-Seyler 368: 579–615.
Laursen, J.S., Andersen, N.A. and Lykkeboe, G. 1985. Temperature acclimation and oxygen binding properties of blood of the European eel, Anguilla anguilla. Comp. Biochem. Physiol. 81A: 79–86.
Lazzarino, G., Di Pierro, D., Tavazzi, B., Cerroni, L. and Giardina, B. 1991. Simultaneous separation of malondialdehyde, ascorbic acid, and adenine nucleotide derivatives from biological samples by ion-pairing high-performance liquid chromatography. Anal. Biochem. 197: 191–196.
Monod, J., Wyman, J. and Changeux, J.P.J. 1965. On the nature of allosteric transitions: A plausible model. Mol. Biol. 12: 88–118.
Morris, R.J. and Gibson, Q.H. 1982. Cooperative ligand binding to hemoglobin. Effects of temperature and pH on a hemoglobin with spectrophotometrically distinct chains (Tunnus thynnus). J. Biol. Chem. 257: 4869–4874.
Mylvaganam, S.E., Bonaventura, C., Bonaventura, J., Getzoff, E.D. 1966. Structural basis for the Root effect in haemoglobin. Nat. Struct. Biol. 3: 275–283.
Ohkubo, N., Watabe, S., Oshiro, T., Takashima, F., Nakajima, H. 1993. Subunit structure of multiple hemoglobins in carp. J. Comp. Physiol. 163B: 445–451.
Perutz, M.F. and Brunori, M. 1982. Stereochemistry of cooperative effects in fish an amphibian haemoglobins. Nature 299: 421–426.
Petruzzelli, R., Goffredo, B.M., Barra, D., Bossa, F., Boffi, A., Verzili, D., Ascoli, F. and Chiancone, E. 1985. Amino acid sequence of the cooperative homodimeric hemoglobin from the mollusc Scapharca inaequivalvis and topology of the intersubunit contacts. FEBS Lett. 184: 328–332.
Powers, D.A. 1974. Structure, function, and molecular ecology of fish hemoglobins. Ann. N.Y. Acad. Sci. 241: 472–490.
Shimada, T., Okihama, Y., Okazaki, T. and Shukuya, R. 1980. The multiple hemoglobins of the Japanese eel, Anguilla japonica. Molecular basis for hemoglobin multiplicity and the subunit interactions. J. Biol. Chem. 255: 7912–7917.
Tamburrini, M., Romano, M., Carratore, V., Kunzmann, A., Coletta, M. and di Prisco, G. 1998. The hemoglobins of the antarctic fishes Atedidraco orianae and Pogonophryne scotti. Amino acid sequence, lack of cooperativity, and ligand binding properties. J. Biol. Chem. 273, 32452–32459.
Weber, R.E. and Jensen F.B. 1988. Functional adaptations in hemoglobins from ectothermic vertebrates. Annu. Rev. Physiol. 50: 161–179.
Weber, R.E., Sullivan B., Bonaventura, J. and Bonaventura, C. 1976. The hemoglobin system of the primitive fish, Amia calva: isolation and functional characterization of the individual hemoglobin components. Biochim. Biophys. Acta. 434: 18–31.
Weiner, S.J., Kollman, P.A., Nguyen, D.T. and Case, D.A. 1986. An all atom forcefield for simulations of proteins and nucleic acid. J.Comp. Chem. 7: 230–252.
Rights and permissions
About this article
Cite this article
Clementi, M., De Rosa, M., Bertonati, C. et al. Functional and structural properties of the hemoglobin components from Italian sturgeon (Acipenser naccarii). Fish Physiology and Biochemistry 24, 191–200 (2001). https://doi.org/10.1023/A:1014088106257
Issue Date:
DOI: https://doi.org/10.1023/A:1014088106257
- Bohr effect
- fish hemoglobin
- hemoprotein
- organic phosphates
- oxygen affinity
- protein-ligand interaction
- Root effect