Skip to main content

Functional and structural properties of the hemoglobin components from Italian sturgeon (Acipenser naccarii)

Abstract

The structural and oxygen binding properties of Acipenser naccarii blood have been investigated. The electrophoretic analysis of the hemolysate of this sturgeon showed the presence of two hemoglobin components, each with a considerable globin multiplicity. Constituent globin chains were analyzed by urea-Triton acid polyacrylamide gel electrophoresis and isolated by high performance liquid chromatography. N-terminal amino acid sequence analysis revealed the presence of a N-terminal proline in two of the three α-chains present in the globin pattern, and the presence of a histidine residue in 2βposition. Oxygen equilibria reveal a very low sensitivity of the individual hemoglobins to chloride ions and temperature; however, in the presence of organic phosphates the oxygen affinity of the hemoglobin components decreases strongly. In particular, when Guanosine-5-triphosphate (GTP) is added, the reduction of the oxygen affinity, at pH 7.4 and 20 °C, is 60% and 50%, respectively, for HbI (anodic component) and HbII (cathodic component). As the effect of protons is concerned, the small Root effect shown by total hemolysate at physiological conditions, seems to be due mainly to the cathodic component. On the whole, the functional properties shown by sturgeon hemoglobin components seem to be related to the particular physiological needs dictated by the environmental characteristics.

This is a preview of subscription content, access via your institution.

References

  • Albers, C., Manz, R., Muster, D. and Hughes, G.M. 1983. Effect of acclimation temperature on oxygen transport in the blood of the carp, Cyprinus carpio. Resp. Physiol. 52: 165–179.

    Google Scholar 

  • Alter, B.P., Goff, S.C. Efremov, G.D. Gravely, M.E. and Huisman T.H.J. 1980. Globin chain electrophoresis: a new approach to the determination of the G gamma/A gamma ratio in fetal haemoglobin and to studies of globin synthesis. British J. Haematol. 44: 527–534.

    Google Scholar 

  • Andersen, N.A., Laursen, J.S. and Lykkeboe, G. 1985. Seasonal variations in hematocrit, red cell hemoglobin and nucleoside triphosphate concentrations, in the European eel Anguilla anguilla. Comp. Biochem. Physiol. A. 81: 87–92.

    Google Scholar 

  • Barra, D., Bossa, F. and Brunori, M. 1981. Structure of binding sites for heterotropic effectors in fish haemoglobins. Nature 293: 587–588.

    Google Scholar 

  • Binotti, I., Giovenco, S., Giardina, B., Antonini, E., Brunori, M. and Wyman, J. 1971. Studies on the functional properties of fish hemoglobins. II. The oxygen equilibrium of the isolated hemoglobin components from trout blood. Arch. Biochem. Biophys. 142: 274–280.

    Google Scholar 

  • Bonaventura, J., Bonaventura, C. and Sullivan, B. 1975. Hemoglobins and hemocyanins: comparative aspects of structure and function. J. Exp. Zool. 194: 155–174.

    Google Scholar 

  • Brittain, T. 1987. The Root effect. Comp. Biochem. Physiol. 86: 473–481. Cepreganova, B., Wilson, J.B., Webber, B.B., Kjovkareska, B., Efremov, G.D. and Huisman, T.H. 1992. Heterogeneity of the hemoglobin of the Ohrid trout (Salmo L. typicus). Biochem. Genet. 30: 385–399.

    Google Scholar 

  • Farmer, M., Fyhnn, H.J., Fyhnn, U.E.H. and Noble, R.W. 1979. Occurrence of Root effect in haemoglobin in Amazonian fishes. Comp. Biochem. Physiol. 62A: 115–124.

    Google Scholar 

  • Fermi, G., Perutz, M.F., Shaanan, B., Fourme, R. 1984. The crystal structure of human deoxyhaemoglobin at 1.74 A resolution. J. Mol. Biol. 175: 159–174.

    Google Scholar 

  • Fourie, F.R. and Van Vuren, J.H. 1976. A seasonal study on the hemoglobins of carp (Cyprinus carpio) and yellowfish (Barbus holubi) in South Africa. Comp. Biochem. Physiol. B. 55: 523–525.

    Google Scholar 

  • Giardina, B. and Amiconi, G. 1981. Measurement of binding of gaseous and nongaseous ligands to hemoglobins by conventional spectrophotometric procedures. Meth. Enzymol. 76: 417–427.

    Google Scholar 

  • Gillen, R.G. and Riggs, A. 1972. Structure and function of the hemoglobins of the carp, Cyprinus carpio. J. Biol Chem. 247: 6039–6046.

    Google Scholar 

  • Gronenborn, A.M., Clore, G.M., Brunori, M., Giardina, B., Falcioni, G. and Perutz, M.F. 1984. Stereochemistry of ATP and GTP bound to fish haemoglobins. A transferred nuclear overhauser enhancement, 31P-nuclear magnetic resonance, oxygen equilibrium and molecular modelling study. J. Mol. Biol. 78: 731–742.

    Google Scholar 

  • Harrington, J.P. 1986. Structural and functional studies of the king salmon, Oncorhynchus tshawytscha, hemoglobins. Comp. Biochem. Physiol. 84: 111–116.

    Google Scholar 

  • Hombrados, I., Vidal, Y., Rodewald, K., Braunitzer, G. and Neuzil, E. 1991. The primary structure of the hemoglobins of a southern hemisphere lamprey (Mordacia mordax, Cyclostomata). Biol. Chem. Hoppe-Seyler 372: 45–56.

    Google Scholar 

  • Kleinschmidt, T. and Sgouros, J.G. 1987. Hemoglobin sequences. Biol. Chem. Hoppe-Seyler 368: 579–615.

    Google Scholar 

  • Laursen, J.S., Andersen, N.A. and Lykkeboe, G. 1985. Temperature acclimation and oxygen binding properties of blood of the European eel, Anguilla anguilla. Comp. Biochem. Physiol. 81A: 79–86.

    Google Scholar 

  • Lazzarino, G., Di Pierro, D., Tavazzi, B., Cerroni, L. and Giardina, B. 1991. Simultaneous separation of malondialdehyde, ascorbic acid, and adenine nucleotide derivatives from biological samples by ion-pairing high-performance liquid chromatography. Anal. Biochem. 197: 191–196.

    Google Scholar 

  • Monod, J., Wyman, J. and Changeux, J.P.J. 1965. On the nature of allosteric transitions: A plausible model. Mol. Biol. 12: 88–118.

    Google Scholar 

  • Morris, R.J. and Gibson, Q.H. 1982. Cooperative ligand binding to hemoglobin. Effects of temperature and pH on a hemoglobin with spectrophotometrically distinct chains (Tunnus thynnus). J. Biol. Chem. 257: 4869–4874.

    Google Scholar 

  • Mylvaganam, S.E., Bonaventura, C., Bonaventura, J., Getzoff, E.D. 1966. Structural basis for the Root effect in haemoglobin. Nat. Struct. Biol. 3: 275–283.

    Google Scholar 

  • Ohkubo, N., Watabe, S., Oshiro, T., Takashima, F., Nakajima, H. 1993. Subunit structure of multiple hemoglobins in carp. J. Comp. Physiol. 163B: 445–451.

    Google Scholar 

  • Perutz, M.F. and Brunori, M. 1982. Stereochemistry of cooperative effects in fish an amphibian haemoglobins. Nature 299: 421–426.

    Google Scholar 

  • Petruzzelli, R., Goffredo, B.M., Barra, D., Bossa, F., Boffi, A., Verzili, D., Ascoli, F. and Chiancone, E. 1985. Amino acid sequence of the cooperative homodimeric hemoglobin from the mollusc Scapharca inaequivalvis and topology of the intersubunit contacts. FEBS Lett. 184: 328–332.

    Google Scholar 

  • Powers, D.A. 1974. Structure, function, and molecular ecology of fish hemoglobins. Ann. N.Y. Acad. Sci. 241: 472–490.

    Google Scholar 

  • Shimada, T., Okihama, Y., Okazaki, T. and Shukuya, R. 1980. The multiple hemoglobins of the Japanese eel, Anguilla japonica. Molecular basis for hemoglobin multiplicity and the subunit interactions. J. Biol. Chem. 255: 7912–7917.

    Google Scholar 

  • Tamburrini, M., Romano, M., Carratore, V., Kunzmann, A., Coletta, M. and di Prisco, G. 1998. The hemoglobins of the antarctic fishes Atedidraco orianae and Pogonophryne scotti. Amino acid sequence, lack of cooperativity, and ligand binding properties. J. Biol. Chem. 273, 32452–32459.

    Google Scholar 

  • Weber, R.E. and Jensen F.B. 1988. Functional adaptations in hemoglobins from ectothermic vertebrates. Annu. Rev. Physiol. 50: 161–179.

    Google Scholar 

  • Weber, R.E., Sullivan B., Bonaventura, J. and Bonaventura, C. 1976. The hemoglobin system of the primitive fish, Amia calva: isolation and functional characterization of the individual hemoglobin components. Biochim. Biophys. Acta. 434: 18–31.

    Google Scholar 

  • Weiner, S.J., Kollman, P.A., Nguyen, D.T. and Case, D.A. 1986. An all atom forcefield for simulations of proteins and nucleic acid. J.Comp. Chem. 7: 230–252.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Clementi, M., De Rosa, M., Bertonati, C. et al. Functional and structural properties of the hemoglobin components from Italian sturgeon (Acipenser naccarii). Fish Physiology and Biochemistry 24, 191–200 (2001). https://doi.org/10.1023/A:1014088106257

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014088106257

  • Bohr effect
  • fish hemoglobin
  • hemoprotein
  • organic phosphates
  • oxygen affinity
  • protein-ligand interaction
  • Root effect