Skip to main content
Log in

Condensed Combustion Products of Aluminized Propellants. III. Effect of an Inert Gaseous Combustion Environment

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

The effect of gaseous combustion environment on particle size distribution and chemical compositions of condensed combustion products of a model propellant containing ammonium perchlorate, binder, and 23.4% aluminum was studied. Experiments were conducted at pressures of 0.6, 4.0, and 7.5MPa. Oxide particles with sizes of 1.2–60 μm and agglomerates with sizes from 60 μm to maximum were investigated. In experiments with nitrogen and helium, the difference in the mean sizes of the sampled agglomerates does not exceed the experimental error. The difference in the amount of unreacted (metallic) aluminum in the agglomerates sampled in nitrogen and helium is also negligible. Replacement of nitrogen by helium affects the size distribution of the oxide particles by increasing the mass fraction of particles with sizes of 1.2–10 μm, and this effect is enhanced with pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. N. Ivanov and A. N. Ivanov, "Devices and facilities of contact diagnostics and their use in studies of high-temperature two-phase flows” Fiz. Goreniya Vzryva, 27, No. 6, 87–101 (1991).

    Google Scholar 

  2. G. I. Levashenko and L. P. Bakhir, "Method for the withdrawl selection of particles formed during the combustion of metallized condensed systems in a constant-pressure chamber” Fiz. Goreniya Vzryva, 9, No. 2, 330–331 (1973).

    Google Scholar 

  3. B. A. Babuk, V. P. Belov, and G. G. Shelukhin, "Combustion of aluminum particles in composite condensed systems under low and high pressures” Fiz. Goreniya Vzryva, 17, No. 3, 26–31 (1981).

    Google Scholar 

  4. J. K. Sambamurthi, E. W. Price, and R. K. Sigmen, “Aluminum agglomeration in solid propellant combustion” AIAA J., 22, No. 8, 1132–1138 (1984).

    Google Scholar 

  5. P. C. Braithwaite, W. N. Christensen, and V. Daugherty, “Quench bomb investigation of aluminum oxide formation from solid rocket propellants (Part I): Experimental methodology” in:25th JANNAF Combustion Meeting (Huntsville, AL), Chemical Propulsion Information Agency, Johns Hopkins Univ., Applied Physics Lab., CPIA-Pub-498-VI, Laurel, MD (1988), pp. 175–184.

    Google Scholar 

  6. Liu Tai-Kang, Huey-Cherng Perng, Luh Song-Ping, and Liu Fang, “Aluminum agglomeration in an AP/RDX/AL/HTPB propellant combustion” AIAA Paper No. 91-1870 (1991), pp. 1–11; J. Propuls. Power, 8, No. 6 (1992), pp. 1177–1184.

  7. O. G. Glotov and V. Ya. Zyryanov, “Condensed combustion products of aluminized propellants. I. A technique for investigating the evolution of disperse-phase particles” Fiz. Goreniya Vzryva, 31, No. 1, 74–80 (1995).

    Google Scholar 

  8. O. G. Glotov and V. Ya. Zyryanov, “The effect of pressure on characteristics of condensed combustion products of aluminized solid propellants” Arch. Combust., 11, Nos. 3/4, 251–262 (1991).

    Google Scholar 

  9. B. N. Fedorov, Yu. L. Plechov, and É. M. Timokhin, “Particle size of aluminum oxide particles in the combustion products of condensed substances” Fiz. Goreniya Vzryva, 18, No. 1, 22–27 (1982).

    Google Scholar 

  10. O. G. Glotov, “The effect of environment (N2 or He) on the size distribution of condensed combustion products of aluminized solid propellant” in: Chemical Gas-dynamics and Combustion of Energetic Materials, Abstracts of the Int. Workshop TW95, Report No. 4.10, Tomsk (1995), pp. 92–93.

  11. O. G. Glotov, “Condensed combustion products of aluminized propellants. II. Evolution of particles with distance from the burning surface”Fiz. Goreniya Vzryva, 36, No. 4, 66–78 (2000).

    Google Scholar 

  12. T. D. Fedotova, O. G. Glotov, and V. E. Zarko, “Chemical analysis of aluminum as a propellant ingredient and determination of aluminum and aluminum nitride in condensed combustion products” Propellants, Explosives, Pyrotechnics, 25, No. 6, 325–332 (2000).

    Google Scholar 

  13. L. A. Petrova (ed.), Progress Science and Engineering, Ser. Powder Metallurgy [in Russian], Vol. 4, VINITI, Moscow (1990).

    Google Scholar 

  14. G. R. Karagedov and N. Z. Lyakhov, “Production and sintering of a nanocrystalline powder of ?-Al2O3Khim. Interes. Ust. Razv., No. 7, 229–238 (1999).

    Google Scholar 

  15. A. B. Vorozhtsov, A. E. Sal'ko, and S. S. Bondarchuk, “Obtaining aluminum oxide in the course of large solid propellant charge combustion” in: Chemical Gasdynamics and Combustion of Energetic Materials, Abstracts of the Int. Workshop TW95, Report No. 4.5, Tomsk (1995) pp. 87.

  16. Yu. Biryukov, A. Vorozhtsov, and L. Bogdanov, “Obtaining submicron abrasive powders by pneumatic processing of electric corundum and products of solid rocket propellant combustion” in: Energetic Materials: Productions, Processing, and Characterization, 29th Int. Annual Conf. of ICT, Report No. 162, Karlsruhe, Germany (1998), pp. 1–9.

  17. N. N. Ivanov and A. N. Ivanov, “A method for producing oxide powders” Fiz. Goreniya Vzryva, 30, No. 2, 64–71 (1994).

    Google Scholar 

  18. L. P. Bakhir, G. I. Levashenko, and V. V. Tamanovich, “Influence of the chemical composition of metallized propellants on the disperse composition, optical characteristics of oxide particles, and flame emissivity” Fiz. Goreniya Vzryva, 16, No. 6, 10–16 (1980).

    Google Scholar 

  19. P. Bucher, L. Ernst, F. L. Dryer, et al., “Detailed studies on the flame structure of aluminum particle combustion” in: V. Yang, T. B. Brill, and Wu-Zhen Ren (eds.), Progress in Astronautics and Aeronautics, Vol. 185: Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics, Ch. 2.19, AIAA Inc., Reston, VA (2000), pp. 689–722.

    Google Scholar 

  20. V. A. Babuk, V. A. Vasil'ev, O. Ya. Romanov, et al., “Physicochemical transformations of drops of Al-Al2O3 in a reactive gas flow” Fiz. Goreniya Vzryva, 29, No. 3, 129–133 (1993).

    Google Scholar 

  21. E. L. Dreizin, “Experimental study of aluminum particle flame evolution in normal and micro-gravity” Combust. Flame, 116, 323–333 (1999).

    Google Scholar 

  22. M. K. Wu, R. S. Windeler, C. K. R. Steiner, et al., “Controlled synthesis of nanosized particles by aerosol processes” Aerosol Sci. Technol., 19, 527–548 (1993).

    Google Scholar 

  23. P. Reist, Introduction to Aerosols Science, Macmillan, New York (1987).

    Google Scholar 

  24. V. I. Malinin, E. I. Kolomin, and I. S. Antipin, “Combustion of aluminum particles in flows of reactive gases” Fiz. Goreniya Vzryva 35, No. 1, 41–48 (1999).

    Google Scholar 

  25. J. Duterque, “Experimental studies of aluminum agglomeration in solid rocket motors” in: 4th Int. Symp. on Special Topics in Chemical Propulsion, ONERA TP 1996-48, Stockholm, Sweden (1996). (Available on the Internet: http://www.onera.fr/RECH/BASIS/public /web fr/document/DDD/243366.pdf.)

  26. J. Dupays, Y. Fabignon, O. Orlandi, and J. F. Trubert, “Combustion of aluminum particles in solid rocket motors” in: ODAS 2000 — 2nd ONERADLR Aerospace Symp. ONERA TP 2001-8. Berlin, Germany (2000). (Available on the Internet: http://www.onera.fr/SEARCH/BASIS/public/ web en/document/DDD/308073.pdf.)

  27. E. W. Price and R. K. Sigman, “Combustion of aluminized solid propellants” in: V. Yang, T. B. Brill, and Wu-Zhen Ren, in: Progress in Astronautics and Aeronautics, Vol. 185: Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics, Ch. 2.18, AIAA Inc., Reston, VA (2000), pp. 663–687.

    Google Scholar 

  28. G. I. Smelkov, A. A. Aleksandrov V. A. Pekhotnikov, and E. V. Grishin, “Some aspects of combustion of large aluminum particles in an airflow” Fiz. Goreniya Vzryva, 14, No. 5, 33–37 (1978).

    Google Scholar 

  29. J. C. Melcher, R. L. Burton, and H. Krier, “Combustion of aluminum particles in solid-rocket motor flows” in: V. Yang, T. B. Brill, and Wu-Zhen Ren, in: Progress in Astronautics and Aeronautics, Vol. 185: Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics, Ch. 2.20, AIAA Inc., Reston, VA (2000), pp. 723–747.

    Google Scholar 

  30. E. I. Gusachenko, V. P. Fursov, and V. I. Shevtsov, et al., “Features of formation of agglomerates in combustion of mixed compositions” in: Physics of Disperse Systems (collected scientific papers) [in Russian], No. 21, Vysshaya Shkola, Kiev–Odessa (1981), pp. 62–66.

    Google Scholar 

  31. L. P. Bakhir and G. I. Levashenko, “Sizes of alumina drops near a burning propellant surface” Fiz. Goreniya Vzryva, 6, No. 8, 842–849 (1973).

    Google Scholar 

  32. T. Chmielewski and P. M. Sherman, “Effect of carrier gas on homogeneous condensation in a supersonic nozzle” AIAA J., No. 4, 789–793 (1970).

    Google Scholar 

  33. Ya. I. Frenkel', Kinetic Theory of Fluids [in Russian], Nauka, Leningrad (1975).

    Google Scholar 

  34. I. S. Grigor'ev and E. Z. Meilikhov (eds.), Physical Quantities, Handbook [in Russian], Énergoatomizdat (1991).

  35. M. P. Strongin, Mathematical Modeling of Flows in High-Temperature Technologies [in Russian], Izd. Novosibirsk. Univ., Novosibirsk (1989).

    Google Scholar 

  36. V. V. Pomerantsev (ed.), Collection of Problems on Combustion Theory [in Russian], Énergoatomizdat, Leningrad (1983).

    Google Scholar 

  37. V. A. Babuk, V. A. Vasilyev, and M. S. Malakhov, “Condensed combustion products at the burning surface of aluminized solid propellant” J. Propuls. Power, 15, No. 6, 783–793 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glotov, O.G. Condensed Combustion Products of Aluminized Propellants. III. Effect of an Inert Gaseous Combustion Environment. Combustion, Explosion, and Shock Waves 38, 92–100 (2002). https://doi.org/10.1023/A:1014018303660

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014018303660

Keywords

Navigation