Skip to main content
Log in

Energy-Concentration Phenomenon in Combustion Waves

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

By the example of natural flames with energy excess, it is shown that these flames can exist in various systems and combustion regimes. The mere existence of some flames, such as cellular and spin flames, is caused by the excess energy. Mechanisms of energy concentration are also numerous. In addition to heat-transfer processes (conduction, convection, and radiation), energy concentration may be caused by mass-transfer processes, phase transitions, filtration, gas compressibility, etc. Examples of flames with artificial conditions for energy concentration demonstrate a wide range of possible applications of this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Masters and R. J. Webb, "The development of a recuperative burner for gas-fired furnaces” Proc. Roy. Soc. London, 393, 19–49 (1984).

    Google Scholar 

  2. F. J. Weinberg, "Combustion in heat-recirculating burners” in: Advanced Combustion Methods, Academic Press (1986), pp. 183–236.

  3. F. Weinberg, "A brief survey of `excess enthalpy' combustion and some recent developments” in: Modern Problems of Combustion and Its Applications, Proc. 1st Int. School-Seminar, Minsk (1995).

  4. B. Lewis and G. von Elbe, “On the theory of flame propagation” J. Chem. Phys., 2, 537 (1934).

    Google Scholar 

  5. Ya. B. Zel'dovich, Theory of Combustion and Detonation of Gases [in Russian], Izd. Akad. Nauk SSSR, Moscow–Leningrad (1944).

    Google Scholar 

  6. Ya. B. Zel'dovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, The Mathematical Theory of Combustion and Explosions, Plenum, New York (1985).

    Google Scholar 

  7. M W. Throng, The Science of Flames and Furnaces, William Clowes and Sons Ltd., London–Beccles (1962).

    Google Scholar 

  8. A. R. Jones, S. A. Lloyd, and F. J. Weinberg, “Combustion in heat exchangers” Proc. Roy. Soc., A, 360, 97–115 (1978).

    Google Scholar 

  9. ”Regeneration for industry” in: R&D Digest, British Gas, No. 8 (1985/86), pp. 16–17.

  10. S. A. Lloyd and F. J. Weinberg, “A burner for mixtures of very low heat content” Nature, No. 251, 47–49 (1974).

    Google Scholar 

  11. V. P. Mikheev and Yu. P. Mednikov, Burning of Natural Gas [in Russian], Nedra, Leningrad (1975).

    Google Scholar 

  12. T. Takeno and K. Sato, “An excess enthalpy flame theory” Combust. Sci. Technol., 20, 73–84 (1979).

    Google Scholar 

  13. B. Deshaies and G. Joulin, “Asymptotic study of an excess-enthalpy flame” Combust. Sci. Technol., 22, 281–285 (1980).

    Google Scholar 

  14. T. Takeno, K. Sato, and K. Hase, “A theoretical study on an excess enthalpy flame” in: Proc. 18th Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh (1981), pp. 465–472.

    Google Scholar 

  15. Y. Kotani and T. Takeno, “An experimental study on stability and combustion characteristics of an excess enthalpy flame” in: Proc. 19th Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh (1982), pp. 1503–1509.

    Google Scholar 

  16. V. S. Babkin, V. I. Drobyshevich, Yu. M. Laevskii, and S. I. Potytnyakov, “Mechanism of combustion-wave propagation in a porous medium with gas filtration” Dokl. Akad. Nauk SSSR, 265, No. 5, 1157–1161 (1982).

    Google Scholar 

  17. V. S. Babkin, V. I. Drobyshevich, Yu. M. Laevskii, and S. I. Potytnyakov, “Filtration combustion of gases” Fiz. Goreniya Vzryva, 19, No. 2, 17–26 (1983).

    Google Scholar 

  18. V. S. Babkin, “Filtrational combustion of gases. Present state of affairs and prospects” Pure Appl. Chem., 65, 335–344 (1993).

    Google Scholar 

  19. A. P. Aldyshin and A. G. Merzhanov, “Theory of filtrational combustion: General notions and state of research” in: Yu. Sh. Matros (ed.), Propagation of Heat Waves in Heterogeneous Media [in Russian], Nauka, Novosibirsk (1988), pp. 9–52.

    Google Scholar 

  20. O. V. Kiselev, Yu. Sh. Matros, and N. A. Chumakova, “Phenomenon of heat-front propagation in a catalyst layer” ibid., pp. 145–203.

    Google Scholar 

  21. G. B. Manelis, “Superadiabaticity” Priroda, Nos. 3–4, 43 (1996).

  22. O. V. Kiselev, Yu. Sh. Matros, et al., “Organization of catalytical processes in the regime of heat-front formation and propagation in a stationary catalyst layer” in: Yu. Sh. Matros (ed.), Propagation of Heat Waves in Heterogeneous Media [in Russian], Nauka, Novosibirsk (1988), pp. 203–233.

    Google Scholar 

  23. "Development of technical requirements for a new technology of utilization of mining methane `Pushpull'” Scientific report on contract No. 36/92, Inst. Chem. Kinetics and Combustion, Sib. Div., Russian Acad. Sci., Novosibirsk (1992).

  24. J. G. Hoffmann, R. Echigo, H. Yoshida, and S. Tada, “Experimental study on combustion in porous media with a reciprocating flow system” Combust. Flame, 111, 32–46 (1997).

    Google Scholar 

  25. N. Kubota and M. Ichida, “Combustion processes of propellants with embedded metal wires” AIAA J., 20, No. 1, 116–121 (1980).

    Google Scholar 

  26. S. S. Rybanin and L. N. Stesik, “Theory of combustion of a condensed propellant with a at heat-conducting element” Fiz. Goreniya Vzryva, 10, No. 5, 634–643 (1974).

    Google Scholar 

  27. A. G. Merzhanov, A. V. Dvoryankin, and A. G. Strunina, “New version of spin combustion” Dokl. Akad. Nauk SSSR, 267, 869–872 (1982).

    Google Scholar 

  28. B. V. Novozhilov, “Quasi-stationary theory of spiral combustion mode” Dokl. Ross. Akad. Nauk, 330, No. 2, 217–219 (1993).

    Google Scholar 

  29. V. I. Babushok, V. N. Simonenko, and V. S. Babkin, “Vortex combustion of Bengal candle” Fiz. Goreniya Vzryva, 29, No. 5, 103–104 (1993).

    Google Scholar 

  30. G. K. Shkadinskii, B. I. Khaikin, and A. G. Merzhanov, “Propagation of an oscillating front of an exothermic reaction in a condensed phase” Fiz. Goreniya Vzryva, 7, No. 1, 19–28 (1971).

    Google Scholar 

  31. A. A. Korzhavin, V. A. Bunev, et al., “On one regime of low-velocity detonation in porous media” in: G. D. Roy et al. (eds.), Gaseous and Heterogeneous Detonations: Science to Applications, ENAS Publ., Moscow (1999), pp. 255–268.

    Google Scholar 

  32. A. A. Korzhavin, V. A. Bunev, D. M. Gordienko, and V. S. Babkin, “Behavior of flames propagating over liquid films with metallic substrates” Fiz. Goreniya Vzryva, 34, No. 3, 15–18 (1998).

    Google Scholar 

  33. G. B. Manelis, E. V. Polianchik, and V. P. Fursov, “Energy technologies of combustion on the basis of the superadiabatic heating phenomenon” Khim. Interes. Ust. Razv., 8, No. 4, 537–545 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babkin, V.S., Vierzba, I. & Karim, G.A. Energy-Concentration Phenomenon in Combustion Waves. Combustion, Explosion, and Shock Waves 38, 1–8 (2002). https://doi.org/10.1023/A:1014005014138

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014005014138

Keywords

Navigation