Skip to main content
Log in

Photolithographic Patterning and Doping of Silica Xerogel Films

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This study shows that conventional photolithography can be applied for patterning native or organic dye-doped silica films (∼0.5 μm thick) obtained via a base-catalyzed sol-gel process. Photoresist was spin-coated onto high optical quality xerogel films, soft-baked, exposed to UV irradiation through a photomask, and developed with a commercial photoresist developing solution. Etching away of the photoresist-unprotected areas of the silica films was carried out with a dilute HF solution, while the remaining unexposed photoresist was removed with acetone. Interdigitated array patterns with features as small as 0.5 mm show a smooth surface and extremely sharp interfaces. Densification of the films at 550°C for 2 h decreases the film thickness by ∼11%, increases the refractive index from 1.420 to 1.456, and allows for well-defined patterning down to length scales of 10 μm. Since the densification conditions are incompatible with organic dopants, it is demonstrated that sol-gel films can be doped after pattering (post-doping) by adsorption of cationic dyes from solution. Scanning electron microscopy reveals that the microstructure of patterned sol-gel films is similar to that of bulk monoliths, indicating that the photolithographic procedure is not harmful to the film quality. All patterned films demonstrate highly regular light diffraction patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.J. Brinker and G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, New York, 1990).

    Google Scholar 

  2. L.L. Hench and J.K. West, Chem. Rev. 90, 33 (1990).

    Google Scholar 

  3. C.A. Morris, M.L. Anderson, R.M. Stroud, C.I. Merzbacher, and D.R. Rolison, Science 284, 622 (1999).

    Google Scholar 

  4. M.M. Collinson and A.R. Howells, Anal. Chem. 72, 702A (2000).

    Google Scholar 

  5. F. De Matteis, P. Prosposito, F. Sarcinelli, M. Casalboni, R. Pizzoferrato, A. Furlani, M.V. Russo, A. Vannucci, and M. Varasi, J. Non-Cryst. Solids 245, 15 (1999).

    Google Scholar 

  6. B. Wang, B. Li, Z. Wang, G. Xu, Q. Wang, and S. Dong, Anal. Chem. 71, 1935 (1999).

    Google Scholar 

  7. C. Malins, M. Niggemann, and B.D. MacCraith, Meas. Sci. Technol. 71, 1105 (2000).

    Google Scholar 

  8. G. Righini and S. Pelli, J. Sol-Gel Sci. Tech. 8, 991 (1997).

    Google Scholar 

  9. N. Leventis and M. Chen, Chem. Mater. 9, 2621 (1997).

    Google Scholar 

  10. D.A. McGillis, in VLSI Technology, edited by S.M. Sze (McGraw Hill, New York, 1983), p. 267.

    Google Scholar 

  11. “Introduction to Microlithography,” 2nd edn. edited by L.F. Thompson, C.G. Willson, and M.J. Bowden (ACS, Washington D.C., 1994).

    Google Scholar 

  12. N. Tohge, K. Shinmou, and T. Minami, J. Sol-Gel Sci. Tech. 2, 581 (1994).

    Google Scholar 

  13. T. Yogo, Y. Takeichi, K. Kikuta, and S. Hirano, J. Am. Ceram. Soc. 78, 1649 (1995).

    Google Scholar 

  14. N. Yamada, I. Yoshinaga, and S. Katayama, J. Appl. Phys. 85, 2423 (1999).

    Google Scholar 

  15. J.T. Rantala, G.E. Jabbour, J. Vahakangas, S. Honkanen, B. Kippelen, and N. Peyghambarian, in 9th Cimtec-World Forum on NewMaterials Symposium X-Innovative Light Emitting Materials, edited by P. Vincenzini and G.C. Righini (Techna Srl, 1999), p. 283.

  16. D.A. Doshi, N.K. Huesing, M. Lu, H. Fan, Y. Lu, K. Simmons-Potter, B.G. Potter Jr., A.J. Hurd, and C.J. Brinker, Science 290, 107 (2000).

    Google Scholar 

  17. S. Ono and S. Hirano, J. Am. Ceram. Soc. 80, 2533 (1997).

    Google Scholar 

  18. H. Yanagi, S. Mashiko, L.A. Nagahara, and H. Tokumoto, Chem. Mater. 10, 1258 (1998).

    Google Scholar 

  19. P. Xu and H. Yanagi, Chem. Mater. 11, 2626 (1999).

    Google Scholar 

  20. S. Chia, J. Urano, F. Tamanoi, B. Dunn, and J.I. Zink, J. Am. Chem. Soc. 122, 6488 (2000).

    Google Scholar 

  21. P. Yand, T. Deng, D. Zhao, P. Feng, D. Pine, B.F. Chmelka, G.M. Whitesides, and G.D. Stucky, Science 282, 2244 (1998).

    Google Scholar 

  22. N. Leventis, I.A. Elder, D.R. Rolison, M.L. Anderson, and C.I. Merzbacher, Chem. Mater. 11, 2837 (1999).

    Google Scholar 

  23. M.D. Sacks and R.-S. Shew, J. Non-Cryst. Solids 92, 383 (1987).

    Google Scholar 

  24. S.H. Hyun, J.J. Kim, and H.H. Park, J. Am. Ceram. Soc. 83, 533 (2000).

    Google Scholar 

  25. A.G. Emslie, F.T. Bonner, and L.G. Peck, J. Appl. Phys. 29, 858 (1958).

    Google Scholar 

  26. F.F. Lange, in Fracture Mechanics of Ceramics: Microstructure Materials and Applications, edited by R.C. Bratt, D.P.H. Hasselman, and F.F. Lange (Plenum Press, New York, 1974), Vol. 2, p. 599.

    Google Scholar 

  27. L.A. Chow, B. Dunn, K.N. Tu, and C. Chiang, J. Appl. Phys. 87, 7788 (2000).

    Google Scholar 

  28. E. Rabinowitch and L.E. Epstein, J. Am. Chem. Soc. 63, 69 (1941).

    Google Scholar 

  29. K. Bergmann and C.T. O'Konski, J. Phys. Chem. 67, 2169 (1963).

    Google Scholar 

  30. C.-Y. Li, Y.-H. Kao, K. Hayashi, T. Tanaka, J.D. Mackenzie, K.-I. Kang, S.-G. Lee, N. Peyghambarian, M. Yamane, G. Zhang, and S.I. Najafi, SPIE Proc. 2288, 151 (1994).

    Google Scholar 

  31. T.M. Harris and E.T. Knobbe, J. Mater. Sci. Lett. 15, 132 (1996).

    Google Scholar 

  32. T.M. Harris and E.T. Knobbe, J. Mater. Sci. Lett. 15, 153 (1996).

    Google Scholar 

  33. M.D. Richards and C.G. Pope, J. Chem. Soc. Faraday Trans. 92, 317 (1996).

    Google Scholar 

  34. Y. Sorek, R. Reisfeld, I. Finkelstein, and S. Ruschin, Appl. Phys. Lett. 63, 3256 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bohannan, E.W., Gao, X., Gaston, K.R. et al. Photolithographic Patterning and Doping of Silica Xerogel Films. Journal of Sol-Gel Science and Technology 23, 235–245 (2002). https://doi.org/10.1023/A:1013974915198

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013974915198

Navigation