Skip to main content
Log in

Effects of Metabotropic Glutamate Receptor Agonists and Antagonists on D-Aspartate Release from Mouse Cerebral Cortical and Striatal Slices

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The cytosolic release of L-glutamate has been held to be responsible for the increase in extracellular glutamate to toxic levels in the brain. The mechanism and regulation of this release was now studied in cerebral cortical and striatal slices with D-[3H]aspartate, a non-metabolized analogue of L-glutamate and a poor substrate for vesicular uptake. L-Glutamate and D-aspartate strongly stimulated the release in a concentration-dependent manner. Of the ionotropic glutamate receptor agonists, only kainate enhanced the basal release in the striatum. Of the metabotropic glutamate receptor ligands, the group I agonist (S)-3,5-dihydroxyphenylglycine (S-DHPG) failed to affect the basal release but inhibited the D-aspartate-evoked release in the striatum. The group I antagonist (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA) had no effect on the basal release in either preparation but enhanced the L-glutamate-evoked release and inhibited the D-aspartate-evoked release in the striatum, not however in the cerebral cortex. The group II agonist (2S,2′R,3′R)-2-(2′,3′-dicarboxycyclopropyl)glycine (DCG IV) and the group II antagonist (2S)-2-ethylglutamate (EGLU) were without effect on the basal, D-aspartate- and L-glutamate-evoked releases of D-[3H]aspartate in either preparation. The group III agonist L-serine-O-phosphate (L-SOP) failed to affect the basal release but reduced the D-aspartate-evoked release in the striatum. The group III antagonist (RS)α-methylserine-O-phosphate (MSOP) failed to affect the basal release but increased the glutamate-evoked release and inhibited the D-aspartate-evoked release in the striatum. Both L-trans-pyrrolidine-2,4-dicarboxylate (L-trans-PDC) and (2S, 1′S, 2′R)-2-carboxycyclopropyl)glycine (L-CCG-III), transportable inhibitors of the high-affinity glutamate uptake, enhanced the basal release, more strongly in the striatum than in the cerebral cortex. L-CCG-III also increased the L-glutamate-evoked release in the striatum. Nontransportable dihydrokainate enhanced the basal release much less and failed to affect the glutamate-evoked release. The results indicate that the release of glutamate from cytosolic pools is carrier-mediated via homoexchange. This process is regulated in the striatum by metabotropic group I and group III receptors in a manner different from the regulation of the vesicular release of glutamate from presynaptic terminals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Fagg, G. E. and Foster, A. C. 1983. Amino acid neurotransmitters and their pathways in the mammalian central nervous system. Neuroscience 9:701–719.

    Google Scholar 

  2. Lipton, S. A. and Rosenberg, P. A. 1994. Excitatory amino acids as a final common pathway for neurologic disorders. New Eng. J. Med. 330:613–622.

    Google Scholar 

  3. Ozawa, S., Kamiya, H., and Tsuzuki, K. 1998. Glutamate receptors in the mammalian central nervous system. Prog. Neurobiol. 54:581–618.

    Google Scholar 

  4. Kanai, Y., Smith, C. P., and Hediger, M. 1993. The elusive transporters with a high affinity for glutamate. Trends Neurosci. 16:365–370.

    Google Scholar 

  5. Danbolt, N. C. 1994. The high affinity uptake system for excitatory amino acids in the brain. Prog. Neurobiol. 44:377–396.

    Google Scholar 

  6. Arriza, J. L., Eliasof, S., Kavanaugh, M. P., and Amara, S. G. 1997. Excitatory amino-acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc. Natl. Acad. Sci. USA 94:4155–4160.

    Google Scholar 

  7. Gegelashvili, G. and Schousboe, A. 1998. Cellular distribution and kinetic properties of high-affinity glutamate transporters. Brain Res. Bull. 45:233–238.

    Google Scholar 

  8. Ozkan, E. D. and Ueda, T. 1998. Glutamate transport and storage in synaptic vesicles. Jap. J. Pharmacol. 77:1–10.

    Google Scholar 

  9. Bellocchio, E. E., Reimer, R. J., Fremeau, R. T. Jr., and Edwards, R. H. 2000. Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science 289:957–960.

    Google Scholar 

  10. Naito, S. and Ueda, T. 1985. Characterization of glutamate uptake into synaptic vesicles. J. Neurochem. 44:99–109.

    Google Scholar 

  11. Vizi, E. S. 2000. Role of high-affinity receptors and membrane transporters in nonsynaptic communication and drug action in the central nervous system. Pharmacol. Rev. 52:63–89.

    Google Scholar 

  12. Attwell, D., Barbour, B., and Szatkowski, M. 1993. Nonvesicular release of neurotransmitters. Neuron 11:401–407.

    Google Scholar 

  13. Gallo, V., Giovannini, C., Suergiu, R., and Levi, G. 1989. Expression of excitatory amino acid receptors by cerebellar cells of the type-2 astrocyte cell lineage. J. Neurochem. 52:1–9.

    Google Scholar 

  14. Holopainen, I., Saransaari, P., and Oja, S. S. 1994. Pharmacological characterization of glutamate binding sites in cultured cerebellar granule cells and cortical astrocytes. Neurochem. Res. 19:111–115.

    Google Scholar 

  15. Biber, K., Laurie, D. J., Berthele, A., Sommer, B., Tolle, T. R., Gebicke-Harter, P. J., van Calker, D., and Boddeke, H. W. 1999. Expression and signaling of group I metabotropic glutamate receptors in astrocytes and microglia. J. Neurochem. 74:1671–1680.

    Google Scholar 

  16. Schools, G. P. and Kimelberg, H. K. 1999. mGluR3 and mGluR5 are the predominant metabotropic glutamate receptor mRNAs expressed in hippocampal astrocytes acutely isolated from young rats. J. Neurosci. Res. 58:533–543.

    Google Scholar 

  17. Cai, Z., Schools, G. P., and Kimelberg, H. K. 2000. Metabotropic glutamate receptors in acutely isolated hippocampal astrocytes: developmental changes of mGluR5 mRNA and functional expression. Glia 29:70–80.

    Google Scholar 

  18. Holopainen, I., Kontro, P., and Oja, S. S. 1989. Release of taurine from cultured cerebellar granule cells and astrocytes: co-release with glutamate. Neuroscience 29:425–432.

    Google Scholar 

  19. Bezzi, P., Carmignoto, G., Pasti, L., Vesce, S., Rossi, D., Lodi Rizzini, B., Pozzan, T., and Volterra, A. 1998. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391:281–285.

    Google Scholar 

  20. Jensen, J. B., Pickering, D. S., and Schousboe, A. 2000. Depolarization-induced release of [3H]D-aspartate from GABAergic neurons caused by reversal of glutamate transporters. Int. J. Dev. Neurosci. 18:309–315.

    Google Scholar 

  21. Kauppinen, R. A., McMahon, H. T., and Nicholls, D. G. 1988. Ca2+-dependent and Ca2+-independent glutamate release, energy status and cytosolic free Ca2+ concentration in isolated nerve terminals following metabolic inhibition: possible relevance to hypoglycaemia and anoxia. Neuroscience 27:175–182.

    Google Scholar 

  22. Sánchez-Prieto, J. and González, P. 1988. Occurrence of a large Ca2+-independent release of glutamate during anoxia in isolated nerve terminals (synaptosomes). J. Neurochem. 50:1322–1324.

    Google Scholar 

  23. Rubio, I., Torres, M., Miras-Portugal, M. T., and Sánchez-Prieto, J. 1991. Ca2+-independent release of glutamate during in vitro anoxia in isolated nerve terminals. J. Neurochem. 57:1159–1164.

    Google Scholar 

  24. Saransaari, P. and Oja, S. S. 1999. Mechanisms of D-aspartate release under ischemic conditions in mouse hippocampal slices. Neurochem. Res. 24:1009–1016.

    Google Scholar 

  25. Nicholls, D. and Sihra, T. 1986. Synaptosomes possess an exocytotic pool of glutamate. Nature 321:772–773.

    Google Scholar 

  26. Terrian, D. M., Dorman, R. V., Damron, D. S., and Gannon, R. L. 1991. Displacement of endogenous glutamate with D-aspartate: an effective strategy for reducing the calcium-independent component of glutamate release from synaptosomes. Neurochem. Res. 16:35–41.

    Google Scholar 

  27. Saransaari, P. and Oja, S. S. 1994. Regulation of D-aspartate release by glutamate and GABA receptors in cerebral cortical slices from developing and ageing mice. Neuroscience 60:191–198.

    Google Scholar 

  28. Holopainen, I. and Kontro, P. 1990. D-Aspartate release from cerebellar astrocytes: modulation of the high K-induced release by neurotransmitter amino acids. Neuroscience 36:115–120.

    Google Scholar 

  29. Volterra, A., Bezzi, P., Rizzini, B. L., Trotti, D., Ullensvang, K., Danbolt, N. C., and Racagni, G. 1996. The competitive transport inhibitor L-trans-pyrrolidine-2,4-dicarboxylate triggers excitotoxicity in rat cortical neuron-astrocyte co-cultures via glutamate release rather than uptake inhibition. Eur. J. Neurosci. 8:2019–2028.

    Google Scholar 

  30. Bridges, R. J., Stanley, M. S., Anderson, M. W., Cotman, C. W., and Chamberlin, R. 1991. Conformationally defined neurotransmitter analogues. Selective inhibition of glutamate uptake by one pyrrolidine-2,4-dicarboxylate diastereomer. J. Med. Chem. 34:717–725.

    Google Scholar 

  31. Mitrovic, A. D. and Johnston, G. A. R. 1994. Regional differences in the inhibition of L-glutamate and L-aspartate sodiumdependent high affinity uptake systems in rat CNS synaptosomes by L-trans-pyrrolidine-2,4-dicarboxylate, threo-3-hydroxy-Daspartate and D-aspartate. Neurochem. Int. 24:583–588.

    Google Scholar 

  32. Segovia, G., Porras, A., and Mora, F. 1997. Effects of 4-aminopyridine on extracellular concentrations of glutamate in striatum of the freely moving rat. Neurochem. Res. 22:1491–1497.

    Google Scholar 

  33. Koch, H. P., Kavanaugh, M. P., Zerangue, N., Humphrey, J. M., Amara, S. G., Chamberlin, A. R., and Bridges, R. J. 1999. Differentiation of substrate and nonsubstrate inhibitors of the highaffinity, sodium-dependent glutamate transporters. Mol. Pharmacol. 56:1095–1104.

    Google Scholar 

  34. Kawai, M., Horikawa, Y., Ishihara, T., Shimamoto, K., and Ohfune, Y. 1992. 2-(Carboxycyclopropyl)glycines: binding, neurotoxicity and induction of intracellular free Ca2+ increase. Eur. J. Pharmacol. 211:195–202.

    Google Scholar 

  35. Dowd, L. A., Coyle, A. J., Rothstein, J. D., Pritchett, D. B., and Robinson, M. B. 1996. Comparison of Na+-dependent glutamate transport activity in synaptosomes, C6 glioma, and Xenopus oocytes expressing excitatory amino acid carrier 1 (EAAC1). Mol. Pharmacol. 49:465–473.

    Google Scholar 

  36. Massieu, L., Morales-Villagrán, A., and Tapia, R. 1995. Accumulation of extracellular glutamate by inhibition of its uptake is not sufficient for inducing neuronal damage: an in vivo microdialysis study. J. Neurochem. 64:2262–2272.

    Google Scholar 

  37. Fallgren, Å. B. and Paulsen, R. E. 1996. A microdialysis study in rat brain of dihydrokainate, a glutamate uptake inhibitor. Neurochem. Res. 21:19–25.

    Google Scholar 

  38. Iserhot, C., Gloveli, T., and Heinemann, U. 1999. Effects of glutamate uptake blockers on stimulus-induced field potentials in rat entorhinal cortex in vitro. Neurosci. Lett. 259:103–106.

    Google Scholar 

  39. Sanchez-Carbente, M. R. and Massieu, L. 1999. Transient inhibition of glutamate uptake in vivo induces neurodegeneration when energy metabolism is impaired. J. Neurochem. 72:129–138.

    Google Scholar 

  40. Matthews, C. C., Zielke, H. R., Wollack, J. B., and Fishman, P. S. 2000. Enzymatic degradation protects neurons from glutamate excitotoxicity. J. Neurochem. 75:1045–1052.

    Google Scholar 

  41. Rutledge, E. M. and Kimelberg, H. K. 1996. Release of [3H]-Daspartate from primary astrocyte cultures in response to raised external potassium. J. Neurosci. 16:7803–7811.

    Google Scholar 

  42. Vandenberg, R. J. 1998. Molecular pharmacology and physiology of glutamate transporters in the central nervous system. Clin. Exp. Pharmacol. Physiol. 25:393–400.

    Google Scholar 

  43. Saransaari, P. and Oja, S. S. 1997. Kainate potentiates D-aspartate release from hippocampal slices from developing and ageing mice. Proc. West. Pharmacol. Soc. 40:29–32.

    Google Scholar 

  44. Potashner, S. J. and Gerard, D. 1983. Kainate-enhanced release of D-[3H]aspartate from cerebral cortex and striatum: reversal by baclofen and pentobarbital. J. Neurochem. 40:1548–1557.

    Google Scholar 

  45. Connick, J. H. and Stone, T. W. 1985. The effect of quinolinic acid and the kynurenines on the uptake of [3H]-D-aspartic acid in rat brain. Br. J. Pharmacol. 84:92P.

    Google Scholar 

  46. Bowman, C. L. and Kimelberg, H. K. 1984. Excitatory amino acids directly depolarize rat brain astrocytes in primary culture. Nature (Lond.) 311:656–659.

    Google Scholar 

  47. Kettenmann, H. and Schachner, M. 1985. Pharmacological properties of γ-aminobutyric acid-, glutamate-, and aspartateinduced depolarizations in cultured astrocytes. J. Neurosci. 5:3295–3310.

    Google Scholar 

  48. Barnes, J. M., Dev, K. K., and Henley, J. M. 1994. Cyclothiazide unmasks AMPA-evoked stimulation of [3H]-L-glutamate release from rat hippocampal synaptosomes. Br. J. Pharmacol. 113:339–341.

    Google Scholar 

  49. Desai, M. A., Burnett, J. P., and Schoepp, D. D. 1994. Cyclothiazide selectively potentiates AMPA and kainate-induced [3H]norepinephrine release from rat hippocampal slices. J. Neurochem. 63:231–237.

    Google Scholar 

  50. Cartmell, J. and Schoepp, D. D. 2000. Regulation of neurotransmitter release by metabotropic glutamate receptors. J. Neurochem. 75:889–907.

    Google Scholar 

  51. Herrero, I., Miras-Portugal, M. T., and Sánchez-Prieto, J. 1998. Functional switch from facilitation to inhibition in the control of glutamate release by metabotropic glutamate receptors. J. Biol. Chem. 273:1951–1958.

    Google Scholar 

  52. Lombardi, G., Alesiani, M., Leonardi, P., Cherici, G., Pellicciari, R., and Moroni, F. 1993. Pharmacological characterization of the metabotropic glutamate receptor inhibiting D-[3H]-aspartate output in rat striatum. Br. J. Pharmacol. 110:1407–1412.

    Google Scholar 

  53. Lovinger, D. M. 1991. Trans-1-aminocyclopentane-1,3-dicarboxylic acid (t-ACPD) decreases synaptic excitation in rat striatal slices through a presynaptic action. Neurosci. Lett. 129:17–21.

    Google Scholar 

  54. Calabresi, P., Mercuri, N., and Bernardi, G. 1992. Activation of quisqualate metabotropic receptors reduces glutamate and GABA-mediated synaptic potentials in the rat striatum. Neurosci. Lett. 139:41–44.

    Google Scholar 

  55. Lombardi, G., Pellegrini-Giampietro, D. E., Leonardi, P., Cherici, G., Pellicciari, R., and Moroni, F. 1994. The depolarization-induced overflow of D-[3H]-aspartate from rat brain slices is modulated by metabotropic glutamate receptors. Neurochem. Int. 24:525–532.

    Google Scholar 

  56. Di Iorio, P., Battaglia, G., Ciccarelli, R., Ballerini, P., Giuliani, P., Poli, A., Nicoletti, F., and Caciagli, F. 1996. Interaction between A1 adenosine and class II metabotropic glutamate receptors in the regulation of purine and glutamate release from rat hippocampal slices. J. Neurochem. 67:302–309.

    Google Scholar 

  57. Casado, M., Benhadan, A., Zafra, F., Danbolt, N., Aragon, C., Gimenez, C., and Kanner, B. I. 1993. Phosphorylation and modulation of brain glutamate transporters by protein kinase C. J. Biol. Chem. 268:27313–27317.

    Google Scholar 

  58. Pisano, P., Samuel, D., Nieoullon, A., and Kerkerian-Le Goff, L. 1996. Activation of the adenylate cyclase-dependent protein kinase pathway increases high affininty glutamate uptake into rat striatal synaptosomes. Neuropharmacol. 35:541–547.

    Google Scholar 

  59. Lortet, S., Samuel, D., Had-Aissouni, L., Masmejean, F., Kerkerian-Le Goff, L., and Pisano, P. 1999. Effects of PKA and PKC modulators on high affinity glutamate uptake in primary neuronal cell cultures from rat cerebral cortex. Neuropharmacol. 38:395–402.

    Google Scholar 

  60. Antoni, F. A., Palkovits, M., Simpson, J., Smith, S. M., Leitch, A. L., Rosie, R., Fink, G., and Paterson, J. M. 1998. Ca2+/Calcineurin-inhibited adenynyl cyclase, highly abundant in forebrain regions, is important for learning and memory. J. Neuroscience 18:9650–9661.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janáky, R., Dohovics, R., Hermann, A. et al. Effects of Metabotropic Glutamate Receptor Agonists and Antagonists on D-Aspartate Release from Mouse Cerebral Cortical and Striatal Slices. Neurochem Res 26, 1217–1224 (2001). https://doi.org/10.1023/A:1013963222332

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013963222332

Navigation