Skip to main content
Log in

Mineralization of regenerated cellulose hydrogels

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Due to their high water swelling, regenerated cellulose hydrogels and sponges were pre-incubated in a Ca-containing solution, and their mineralization was investigated. Results obtained demonstrate that a simple pre-incubation treatment in a Ca containing solution can induce mineralization in materials with limited or no tendency to mineralize. The minerals formed had an apatitic carbonated and poorly crystalline structure, resembling carbonated hydroxyapatite found in bone mineral. The apatitic layer formed showed a relatively accelerated growth using this technique, exhibiting nodules in their macroscopic structure, which seem to indicate lateral growth. The porous structure of regenerated cellulose sponges was also homogeneously mineralized using this technique. © 2001 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. I. Abdel-Fattah, A. M. El-Sayed, F. M. Ali and H. H. Beheri, Biomaterials 15 (1994) 643.

    Google Scholar 

  2. Z. Schwartz, G. Braun, D. Kohavi, B. Brooks, D. Amir, J. Sela and B. Boyan, J. Biomed. Mater. Res. 27 (1993) 1029.

    Google Scholar 

  3. P. Royer, S. Amrah-Bouali, M. Freche, C. Rey, N. Rouquet and G. Bonel, in “Bioceramics”, vol. 5, edited by T. Yamamuro, T. Kokubo and T. Nakamura (Kobunshi-Kankokai, Kyoto, Japan, 1992) p. 95.

    Google Scholar 

  4. A. Krajewski, A. Ravaglioli, R. Mongiorgi and A. Moroni, J. Biomed. Mater. Res. 22 (1988) 445.

    Google Scholar 

  5. L. L. Hench, J. Biomed. Mater. Res. 41 (1998) 511.

    Google Scholar 

  6. S. Hayakawa, K. Tsuru, H. Iida, C. Ohtsuki and A. Osaka, J. Ceram. Soc. Jpn. 104 (1996) 1000.

    Google Scholar 

  7. T. Kitsugi, T. Yamamuro, T. Nakamura and T. Kokubo, J. Biomed. Mater. Res. 23 (1989) 631.

    Google Scholar 

  8. P. Li, X. Ye, I. Kangasniemi, J. M. A. De Blieck-Hogervorst, C. P. A. T. Klein and K. De Groot, J. Biomed. Mater. Res. 29 (1995) 325.

    Google Scholar 

  9. P. Li, T. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga, T. Nakamura and T. Yamamuro, J. Mater. Sci.: Mater. Med. 4 (1993) 127.

    Google Scholar 

  10. J. J. M. Damen and J. M. Ten Cate, J. Dent. Res. 68 (1989) 1355.

    Google Scholar 

  11. E. LeitÃo, M. A. Barbosa and K. De Groot, J. Mater. Sci.: Mater. Med. 6 (1995) 849.

    Google Scholar 

  12. P. Li, I. Kangasniemi and K. De Groot, J. Am. Ceram. Soc. 77 (1994) 1307.

    Google Scholar 

  13. B. Lowenberg, R. Chernecky, A. Shiga and J. E. Davies, Cells & Materials 1 (1991) 177.

    Google Scholar 

  14. T. Hanawa and M. Ota, Biomaterials 12 (1991) 767.

    Google Scholar 

  15. J. J. M. Damen, J. M. Ten Cate and J. E. Ellingsen, J. Dent. Res. 7 (1991) 1346.

    Google Scholar 

  16. A. M. Radder, J. A. Van Loon, G. J. Puppels and C. A. Van Blitterswijk, J. Mater. Sci.: Mater. Med. 6 (1995) 510.

    Google Scholar 

  17. M. L. Gaillard and C. A. Van Blitterswijk, J. Mater. Sci.: Mater. Med. 5 (1994) 695.

    Google Scholar 

  18. G. Golomb, J. Mater. Sci.: Mater. Med. 3 (1992) 272.

    Google Scholar 

  19. G. Golomb and D. Wagner, Biomaterials 12 (1991) 397.

    Google Scholar 

  20. C. C. P. M. Verheyen, J. R. De Wijn, C. A. Van Blitterswijk, K. De Groot and P. M. Rozing, J. Biomed. Mater. Res. 27 (1993) 433.

    Google Scholar 

  21. S. I. Stupp and G. W. Ciegler, J. Biomed. Mater. Res. 26 (1992) 169.

    Google Scholar 

  22. W. Bonfield, in “Bioceramics: Materials Characteristics vs In Vivo Behavior”, edited by P. Ducheyne and J. E. Lemons (Ann. New York Academy of Sciences., NY, USA, 1988) p. 173.

    Google Scholar 

  23. K. Suzuki, R. Kobayashi, Y. Yokoyama, Y. Harada and T. Kokubo, in “Bioceramics”, vol. 6, edited by P. Ducheyne and D. Christiansen (Butterworth-Heinemann, Guilford, UK, 1993) p. 245.

    Google Scholar 

  24. M. Tanahashi, K. Hata, T. Kokubo, M. Minoda, T. Miyamoto, T. Nakamura and T. Yamamuro, in “Bioceramics”, vol. 5, edited by T. Yamamuro, T. Kokubo and T. Nakamura (Kobunshi-Kankokai, Kyoto, Japan, 1992) p. 57.

    Google Scholar 

  25. T. Kokubo, K. Hata, T. Nakamura and T. Yamamuro, in “Bioceramics”, vol. 4, edited by W. Bonfield, G. W. Hastings and K. E. Turner (Butterworth-Heinemann, Guildford, UK, 1991) p. 113.

    Google Scholar 

  26. A. Oyane, M. Minoda, T. Miyamoto, R. Takahashi, K. Nakanishi, H.-M. Kim, T. Kokubo and T. Nakamura, J. Biomed. Mater. Res. 47 (1999) 367.

    Google Scholar 

  27. A. Osaka, C. Ohtsuki and K. Tsuru, in “Bioceramics”, vol. 8, edited by J. Wilson, L. L. Hench and D. Greenspon (Pergamon Press, New York, USA, 1995) p. 441.

    Google Scholar 

  28. S. Li, Q. Liu, J. De Wijn, K. De Groot and B. Zhou, J. Mater. Sci. Lett. 15 (1996) 1882.

    Google Scholar 

  29. S. F. A. Hossainy and J. A. Hubbell, Biomaterials 15 (1994) 921.

    Google Scholar 

  30. P. L. Granja, M. A. Barbosa, L. PouysÉgu, B. De JÉso and C. Baquey, in “Frontiers in Biomedical Polymers Applications 2”, edited by R. Ottenbrite (Technomic Press, Lancaster, PA, USA, 1999) p. 195.

    Google Scholar 

  31. P. L. Granja, L. PouysÉgu, B. De JÉso, F. Rouais, C. Baquey and M. A. Barbosa, J. Mater. Sci.: Mater. Med. (2001). In press.

  32. M. Tanahashi and T. Matsuda, J. Biomed. Mater. Res. 34 (1997) 305.

    Google Scholar 

  33. S. Li, Q. Liu, J. De Wijn, J. Wolke, B. Zhou and K. De Groot, J. Mater. Sci.: Mater. Med. 8 (1997) 543.

    Google Scholar 

  34. E. Kato, Y. Eika and Y. Ikada, J. Biomed. Mater. Res. 32 (1996) 687.

    Google Scholar 

  35. M. R. Mucalo, Y. Yokogawa, M. Toryiama, T. Suzuki, Y. Kawamoto, F. Nagata and N. Nishizawa, J. Mater. Sci.: Mater. Med. 6 (1995) 597.

    Google Scholar 

  36. M. R. Mucalo, Y. Yokogawa, T. Suzuki, Y. Kawamoto, F. Nagata and K. Nishizawa, J. Mater. Sci.: Mater. Med. 6 (1995) 658.

    Google Scholar 

  37. J. Poustis, C. Baquey and D. Chauveaux, Clin. Mater. 16 (1994) 119.

    Google Scholar 

  38. D. Chauveaux, C. BarbiÉ, X. Barthe, C. Baquey and J. Poustis, Clin. Mater. 5 (1990) 251.

    Google Scholar 

  39. J. C. Pommier, J. Poustis, C. Baquey and D. Chauveaux, Fr. Patent No. 8610331 (1986); Eur. Patent No. 0256906 A1 (1987); US Patent No. 4904258 (1990).

  40. M. Martson, J. Viljanto, T. Hurme, P. Laippala and P. Saukko, Biomaterials 20 (1999) 1899.

    Google Scholar 

  41. O. Pajulo, B. Lonnberg, K. Lonnqvist and J. Viljanto, in “Abstracts Books of the XXXVIII Congress of The European Society for Surgical Research ESSR”, edited by H. Aro and J. Niinikovski (Turku, Finland, 1993) p. 156.

    Google Scholar 

  42. T. Kokubo, in “Handbook of Bioactive Ceramics, vol. 1: Bioactive Glasses and Glass-Ceramics”, edited by T. Yamamuro, L. L. Hench and J. Wilson (CRC Press, Boca Raton, FL, USA, 1990) p. 41.

    Google Scholar 

  43. C. C. Ribeiro, MSc Thesis. Porto, Portugal, Faculdade de Engenharia da Universidade do Porto, (1994).

  44. S.-H. Rhee and J. Tanaka, Biomaterials 20 (1999) 2155.

    Google Scholar 

  45. F. Miyaji, H.-M. Kim, S. Handa, T. Kokubo and T. Nakamura, Biomaterials 20 (1999) 913.

    Google Scholar 

  46. S. R. Radin and P. Ducheyne, J. Biomed. Mater. Res. 27 (1993) 35.

    Google Scholar 

  47. G. R. Sauer and R. E. Wuthier, J. Biol. Chem. 263 (1988) 13718.

    Google Scholar 

  48. J. C. Elliot. “Structure and Chemistry of the Apatites and Other Calcium Orthophosphates”, Studies in Inorganic Chemistry Series 18 (Elsevier, Amsterdam, The Netherlands, 1994).

    Google Scholar 

  49. T. Hanawa and M. Ota, Biomaterials 12 (1991) 767.

    Google Scholar 

  50. C. Rey, M. Shimizu, B. Collins and M. J. Glimcher, Calcif. Tissue Int. 46 (1990) 384.

    Google Scholar 

  51. R. Z. Legeros, Clin. Mater. 14 (1993) 65.

    Google Scholar 

  52. M. Heughebaert, R. Z. Legeros, M. Gineste, A. Guilhem and G. Bonel, J. Biomed. Mater. Res.: Appl. Biomaterials 22 (1988) 257.

    Google Scholar 

  53. K. Kieswetter, T. W. Bauer, S. A. Brown, F. Van Lente and K. Merritt, Biomaterials 15 (1994) 183.

    Google Scholar 

  54. C. Rey, Actual. Chimique (1995) 41.

  55. G. H. Nancollas, in “Biomineralization. Chemical and Biochemical Perspectives”, edited by S. Mann, J. Webb and R. J. P. Williams (VCH, Weinheim, Germany, 1989) p. 157.

    Google Scholar 

  56. S. Bohic, D. Heymann, J. A. Pouezat, O. Gauthier and G. Daculsi, Sciences de la vie 321 (1998) 865.

    Google Scholar 

  57. C. Rey, E. Strawich and M. J. Glimcher, Bulletin de l'Institut Océanographique, Monaco 14 (1994) 55.

    Google Scholar 

  58. H. Dasarathy, C. Riley and H. D. Coble, J. Biomed. Mater. Res. 27 (1993) 477.

    Google Scholar 

  59. K. Yamashita, Y. Horisaka, K. Satomura and T. Takagi, Jpn. J. Oral Biol. 33 (1991) 166.

    Google Scholar 

  60. G. Bonel, J.-C. Heughebaert, M. Heughebaert, J. L. Lacout and A. Lebugle, Ann. N. Y. Acad. Sci. 523 (1988) 115.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Granja, P.L., Ribeiro, C.C., De Jéso, B. et al. Mineralization of regenerated cellulose hydrogels. Journal of Materials Science: Materials in Medicine 12, 785–791 (2001). https://doi.org/10.1023/A:1013960601330

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013960601330

Keywords

Navigation