Skip to main content
Log in

On the Convergence of Borel Approximants

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

For a wide class of functions having a representation as Laplace integrals, we obtain expansions in terms of certain higher transcendental functions. Compared with the classical method of expansions as factorial series, these series converge considerably faster and, at the same time, in larger regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Balser, From divergent power series to analytic functions. Lecture Notes in Math. 1582 (1994).

  2. W. Balser, W.B. Jurkat, and D.A. Lutz, On the reduction of connection problems for differential equations with an irregular singular point to ones with only regular singularities, Part I. SIAM J. Math. Anal. 12 (1981), 691–721.

    Google Scholar 

  3. F. Chysak, M. Durand, and B. Salvy, Borel resummation of divergent series using Gfun, INRIA Demo 3, http://algo.inria.fr/libraries/autocomb/autocomb.html.

  4. P. Deuflhard and A. Hohmann, Numerische Mathematik. De Gruiter, 1991.

  5. G. Doetsch, Handbuch der Laplacetransformation II, Birkhäuser, 1954. ON THE CONVERGENCE OF BOREL APPROXIMANTS 91

  6. T. M. Dunster, D.A. Lutz, and R. Schäfke, Convergent Liouville–Green expansions for second-order linear differential equations, with an application to Bessel functions. Proc. London Math. Soc., Ser. A 440 (1993), 37–54.

    Google Scholar 

  7. S. Graffi, V. Grecchi, and B. Simon, Borel summability: Application to the anharmonic oscillator. Phys. Lett. B 32B (1970), 631–634.

    Google Scholar 

  8. J. Gunson and P. H. Ng, Summability of asymptotic perturbation expansions. Nuovo Cimento Soc. Ital. Fis. A 8A (1972), 63–78.

    Google Scholar 

  9. B. Hirsbrunner, Approximants de Borel. Helv. Phys. Acta 55 (1982), 295–329.

    Google Scholar 

  10. B. Hirsbrunner and J. J. Loeffel, Sur les séries asymptotiques sommable selon Borel. Helv. Phys. Acta 48 (1975), p. 546.

    Google Scholar 

  11. J. Horn, Fakultätenreihen in der Theorie der linearen Differentialgleichungen. Math. Ann. 71 (1912), 510–532.

    Google Scholar 

  12. G. K. Immink, Asymptotics of analytic difference equations. Lecture Notes in Math. 1085, Springer Verlag, 1984.

  13. H. Kober, Dictionary of conformal representations. Dover, 1957.

  14. D.A. Lutz, M. Miyake, and R. Schäfke, On the Borel summability of divergent solutions of the heat equation. (to appear in Nagoya Math. J.)

  15. D. A. Lutz and R. Schäfke, On the remainders of the asymptotic expansion of solutions of differential equations near irregular singular points. Complex Variables Theory Appl. 26 (1994), No. 3, 203–212.

    Google Scholar 

  16. 91-1, Calculating connection coefficients for meromorphic differential equations. Complex Variables Theory Appl. 34 (1997), 145–170.

    Google Scholar 

  17. M. F. Marziani, Convergence of a class of Borel–Padé-type approximants. Nuovo Cimento Soc. Ital. Fis. 99 (1987), 145–154.

    Google Scholar 

  18. F. Nevanlinna, Zur Theorie der asymptotischen Potenzreihen. Ann. Acad. Sci. Fenn. Math. Diss. Ser. A1 12 (1918), 1–81.

    Google Scholar 

  19. N. E. Nörlund, Leçons sur les séries l'interpolation. Gauthier–Villars, Paris, 1926.

    Google Scholar 

  20. A. B. Olde Daalhuis and F.W. J. Olver, On the asymptotic and numerical solution of linear ordinary differential equations. SIAM Rev. 40 (1998), No. 3, 463–495.

    Google Scholar 

  21. M. Reed and B. Simon, Methods of modern mathematical pysics, IV: Analysis of operators. Academic Press, New York, 1978.

    Google Scholar 

  22. Heun's differential equations. Ed. A. Ronveaux, Oxford Science Publisher, 1995.

  23. D. Schmidt and G. Wolf, On the double confluent Heun equation. Trends and developments in ordinary differential equations. Ed. Y. Alavi and P.F. Hsieh, World Scientific, 1994, pp. 293–303.

  24. 91-1, The double confluent Heun equation. Heun's differential equations. Ed. A. Ronveaux. Oxford University Press, 1995, pp. 128–188. 92 W. BALSER, D. A. LUTZ, and R. SCH¨AFKE

  25. B. Simon, Coupling constant analyticity for the anharmonic oscillator. Ann. Physics 58 (1970), 76–136.

    Google Scholar 

  26. J. Thomann, Resommation de s´eries formelles. Numer. Math. 58 (1990), 503–535.

    Google Scholar 

  27. G.N. Watson, A theory of asymptotic series. Trans. London Math. Soc., Ser. A 211 (1911), 279–313.

    Google Scholar 

  28. 92-1, The transformation of an asymptotic series into a convergent series of inverse factorials. Rend. Circ. Math. Palermo 34 (1912), 41–88.

    Google Scholar 

  29. J. Zinn-Justin, Quantum field theory and critical phenomena. Oxford Science, 1989. (

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balser, W., Lutz, D. & Schäfke, R. On the Convergence of Borel Approximants. Journal of Dynamical and Control Systems 8, 65–92 (2002). https://doi.org/10.1023/A:1013952717344

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013952717344

Keywords

Navigation