Skip to main content

Mathematical Modeling of Ultraviolet Germicidal Irradiation for Air Disinfection

Abstract

A comprehensive treatment of the mathematical basis for modeling the disinfection process for air using ultraviolet germicidal irradiation (UVGI). A complete mathematical description of the survival curve is developed that incorporates both a two stage inactivation curve and a shoulder. A methodology for the evaluation of the three-dimensional intensity fields around UV lamps and within reflective enclosures is summarized that will enable determination of the UV dose absorbed by aerosolized microbes. The results of past UVGI studies on airborne pathogens are tabulated. The airborne rate constant for Bacillus subtilis is confirmed based on results of an independent test. A re-evaluation of data from several previous studies demonstrates the application of the shoulder and two-stage models. The methods presented here will enable accurate interpretation of experimental results involving aerosolized microorganisms exposed to UVGI and associated relative humidity effects

This is a preview of subscription content, access via your institution.

References

  1. R.L. Abshire, H. Dunton, Applied and Environmental Microbiology 41, 1419–1423 (1981).

    Google Scholar 

  2. A. Anellis, N. Grecz, D. Berkowitz, Applied Microbiology 13, 397–401 (1965).

    Google Scholar 

  3. S.C. Antopol, P.D. Ellner, Applied and Environmental Microbiology 38, 347–348 (1979).

    Google Scholar 

  4. A. Asthana, R.W. Tuveson, International Journal of Plant Science 153, 442–452 (1992).

    Google Scholar 

  5. C.B. Beggs, K.G. Kerr, J.K. Donelly, P.A. Sleigh, D.D. Mara, G. Cairns, Transactions of the Royal Society of Tropical Medicine and Hygiene 94, 141–146 (2000).

    Google Scholar 

  6. E.F. Blatchley, Water Research 31, 2205–2218 (1997).

    Google Scholar 

  7. A.P. Casarett, Radiation Biology (Prentice-Hall, Englewood, 1968).

    Google Scholar 

  8. O. Cerf, Journal of Applied Bacteriology 42, 1–19 (1977).

    Google Scholar 

  9. H. Chick, Journal of Hygiene 8, 92 (1908).

    Google Scholar 

  10. F.M. Collins, Applied Microbiology 21, 411–413 (1971).

    Google Scholar 

  11. H.L. David, The American Review of Respiratory Disease 108, 1175–1184 (1973).

    Google Scholar 

  12. I.A. Davidovich, G.P. Kishchenko, Molecular Genetics, Microbiology and Virology 6, 13–16 (1991).

    Google Scholar 

  13. W.B. Elmer, The Optical Design of Reflectors (TLA Lighting Consultants, Inc., Salem, MA, 1989).

    Google Scholar 

  14. H. Fujikawa, T. Itoh, Applied Microbiology 62, 3745–3749 (1996).

    Google Scholar 

  15. G.J. Galasso, D.G. Sharp, Journal of Bacteriology 90, 1138–1142 (1965).

    Google Scholar 

  16. F.L. Gates, Journal of General Physiology 13, 231–260 (1929).

    Google Scholar 

  17. R.W. Gilpin, in Legionella: Proceedings of the 2nd International Symposium, edited by C. Thornsberry (American Society for Microbiology, Washington, 1984).

    Google Scholar 

  18. W. Harm, Biological Effects of Ultraviolet Radiation (Cambridge University Press, New York, 1980)

    Google Scholar 

  19. W.F. Hill, F.E. Hamblet, W.H. Benton, E.W. Akin, Applied Microbiology 19, 805–812 (1970).

    Google Scholar 

  20. IES, Lighting Handbook Application Volume (Illumination Engineering Society, 1970).

  21. S.M. Jacob, J.S. Dranoff, AIChE Journal 16, 359–363 (1970).

    Google Scholar 

  22. M.M. Jensen, Applied Microbiology 12, 418–420 (1964).

    Google Scholar 

  23. L.C. Keller, T.L. Thompson, R.B. Macy Applied and Environmental Microbiology 43, 424–429 (1982).

    Google Scholar 

  24. G.B. Knudson, Applied and Environmental Microbiology 52, 444–449 (1986).

    Google Scholar 

  25. A.L. Koch, Bacterial Growth and Form (Chapman & Hall, New York, 1995).

    Google Scholar 

  26. W.J. Kowalski, W.P. Bahnfleth, ASHRAE Transactions 106, 4–15 (2000).

    Google Scholar 

  27. W.J. Kowalski, PhD Thesis, The Pennsylvania State University (2001).

  28. O.M. Lidwell, E.J. Lowbury, Annual Review of Microbiology 14, 38–43 (1950).

    Google Scholar 

  29. J.S. Little, R.A. Kishimoto, P.G. Canonico, Infection Immunity 27, 837–841 (1980).

    Google Scholar 

  30. M. Luckiesh, Applications of Germicidal, Erythemal and Infrared Energy (D. Van Nostrand Co., New York, 1946).

    Google Scholar 

  31. E. Mitscherlich, E.H. Marth, Microbial Survival in the Environment (Springer-Verlag, Berlin, 1984).

    Google Scholar 

  32. W.A. Moats, R. Dabbah, V.M. Edwards, Journal of Food Science 36, 523–526 (1971).

    Google Scholar 

  33. M.F. Modest, Radiative Heat Transfer (McGraw-Hill, New York, 1993).

    Google Scholar 

  34. J. Mongold, Genetics 132, 893–898 (1992).

    Google Scholar 

  35. N. Munakata, M. Saito, K. Hieda, Photochemistry and Photobiology 54, 761–768 (1991).

    Google Scholar 

  36. Philips, Germicidal Lamps and Applications (Catalog No. U.D.C. 628.9, Netherlands, 1985).

  37. K.M. Pruitt, D.N. Kamau, Journal of Industrial Microbiology 12, 221–231 (1993).

    Google Scholar 

  38. R.G. Qualls, J.D. Johnson, Applied Microbiology 45, 872–877 (1983).

    Google Scholar 

  39. R.O. Rahn, P. Xu, S.L. Miller. Photochemistry and Photobiology 70, 314–318 (1999).

    Google Scholar 

  40. A.J. Rainbow, S. Mak, International Journal of Radiation Biology 24, 59–72 (1973).

    Google Scholar 

  41. H.C. Rentschler, R. Nagy, G. Mouromseff, Journal of Bacteriology 42, 745–774 (1941).

    Google Scholar 

  42. H.C. Rentschler, R. Nagy, Journal of Bacteriology 44, 85–94 (1942).

    Google Scholar 

  43. R.L. Riley, M. Knight, G. Middlebrook, American Review of Respiratory Disease 113, 413–418 (1976).

    Google Scholar 

  44. R.L. Riley, J.E. Kaufman, Applied Microbiology 23, 1113–1120 (1972).

    Google Scholar 

  45. W.M. Rohsenow, J.P. Hartnett, Handbook of Heat Transfer (McGraw-Hill, New York, 1973).

    Google Scholar 

  46. A.D. Russell, The Destruction of Bacterial Spores (Academic Press, New York, 1982).

    Google Scholar 

  47. B.F. Severin, M.T. Suidan, R.S. Englebrecht, Water Research 17, 1669–1678 (1983).

    Google Scholar 

  48. B.F. Severin, M.T. Suidan, B.E. Rittmann, R.S. Englebrecht, Journal of Water Pollution Control 56, 164–169 (1984).

    Google Scholar 

  49. B.F. Severin, P.F. Roessler, Water Research 32, 1718–1724 (1998).

    Google Scholar 

  50. G. Sharp, Journal of Bacteriology 37, 447–459 (1939).

    Google Scholar 

  51. G. Sharp, Journal of Bacteriology 38, 535–547 (1940).

    Google Scholar 

  52. G.H. Smerage, A.A. Teixeira, Journal of Industrial Microbiology 12, 211–220 (1993).

    Google Scholar 

  53. M.T. Suidan, B.F. Severin, AIChE Journal 32, 1902–1909 (1986).

    Google Scholar 

  54. UVDI, Report on Bioassays of S. marscecens and B. subtilis exposed to UV irradiation. Ultraviolet Devices, Inc. (2000).

  55. Y. Wang, A. Casadevall, Applied Microbiology 60, 3864–3866 (1994).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kowalski, W.J., Bahnfleth, W.P., Witham, D.L. et al. Mathematical Modeling of Ultraviolet Germicidal Irradiation for Air Disinfection. Quantitative Microbiology 2, 249–270 (2000). https://doi.org/10.1023/A:1013951313398

Download citation

  • UVGI
  • UV air disinfection
  • surface disinfection
  • survival curve
  • decay curve