Journal of Mathematical Imaging and Vision

, Volume 16, Issue 2, pp 89–105 | Cite as

Geometry and Color in Natural Images

  • Vicent Caselles
  • Bartomeu Coll
  • Jean-Michel Morel


Most image analysis algorithms are defined for the grey level channel, particularly when geometric information is looked for in the digital image. We propose an experimental procedure in order to decide whether this attitude is sound or not. We test the hypothesis that the essential geometric contents of an image is contained in its level lines. The set of all level lines, or topographic map, is a complete contrast invariant image description: it yields a line structure by far more complete than any edge description, since we can fully reconstruct the image from it, up to a local contrast change. We then design an algorithm constraining the color channels of a given image to have the same geometry (i.e. the same level lines) as the grey level. If the assumption that the essential geometrical information is contained in the grey level is sound, then this algorithm should not alter the colors of the image or its visual aspect. We display several experiments confirming this hypothesis. Conversely, we also show the effect of imposing the color of an image to the topographic map of another one: it results, in a striking way, in the dominance of grey level and the fading of a color deprived of its geometry. We finally give a mathematical proof that the algorithmic procedure is intrinsic, i.e. does not depend asymptotically upon the quantization mesh used for the topographic map. We also prove its contrast invariance.

color images level sets morphological filtering luminance constraint 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Almansa, B. Coll, and J. Froment, “A geometric application to color images,” Private Communication, 2000.Google Scholar
  2. 2.
    L. Ambrosio, V. Caselles, S. Masnou, and J.M. Morel, “Connected components of sets of finite perimeter and applications to image processing,” Preprint, 1999.Google Scholar
  3. 3.
    H. Asada and M. Brady, “The curvature primal sketch,” IEEE PAMI, Vol. 8, No. 1, pp. 2–14, 1986.Google Scholar
  4. 4.
    C. Ballester, E. Cubero-Castan, M. Gonzalez, and J.M. Morel, “Contrast invariant image intersection,” Cahiers de l'ENS Cachan, 9817, 1998.Google Scholar
  5. 5.
    P. Blomgren and T.F. Chan, “Color TV: Total variation methods for restoration of vector-valued images,” IEEE Transactions on Image Processing, Vol. 7, pp. 304–309, 1998.Google Scholar
  6. 6.
    V. Caselles, B. Coll, and J.M. Morel, “A Kanizsa programme,” Preprint, CEREMADE, Univ. Paris-Dauphine, 1995.Google Scholar
  7. 7.
    V. Caselles, B. Coll, and J.M. Morel, “Topographic maps and local contrast changes in natural images,” International Journal of Computer Vision, Vol. 33, No. 1, pp. 5–27, 1999.Google Scholar
  8. 8.
    A. Chambolle, “Partial differential equations and image processing,” in Proceedings of the Fourth IEEE Internatinal Conference on Image Processing, ICIP-94, Austin, Texas, Nov. 1994, pp. 16–20.Google Scholar
  9. 9.
    B. Coll and J. Froment, “Topographics maps of color images,” in Proceedings of the 15th International Conference on Pattern Recognition, Barcelona, 2000, Vol. 3, pp. 613–616.Google Scholar
  10. 10.
    J.L. Doob, Stochastic Processes, Wiley Classics Library, 1953.Google Scholar
  11. 11.
    L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Advanced Math., CRC Press: Boca Raton, FL, 1992.Google Scholar
  12. 12.
    L. Hjelmslev, Prol´egom`enes `a une th´eorie du langage, Minuit, 1971.Google Scholar
  13. 13.
    B.K. Horn, Robot Vision, MIT Press: Cambridge, MA, 1986.Google Scholar
  14. 14.
    W. Kandinsky, Point et ligne sur plan, Folio essais, Gallimard, 1991.Google Scholar
  15. 15.
    J.J. Koenderink, “The structure of images,” Biol. Cybern., Vol. 50, pp. 363–370, 1984.Google Scholar
  16. 16.
    J.J. Koenderink and A.J. van Doorn, “Dynamic shape,” Biological Cybernetics, Vol. 53, pp. 383–396, 1986.Google Scholar
  17. 17.
    J.L. Lisani, P. Monasse, L. Moisan, and J.M. Morel, “Affine invariant mathematical morphology applied to generic shape recognition algorithm,” in Proceedings of the International Symposium on Mathematical Morphology 2000, Palo Alto, Kluwer Academic Publishers, 2000, pp. 91–98.Google Scholar
  18. 18.
    A. Mackworth and F. Mokhtarian, “A theory of multiscale, curvature-based shape representation for planar curves,” IEEE PAMI, Vol. 14, pp. 789–805, 1992.Google Scholar
  19. 19.
    S. Masnou, “Filtrage et d´esocclusion d'images par m´ethodes d'ensembles de niveau,” Ceremade, Universit´e Paris-Dauphine, Ph.D. Thesis, 1998.Google Scholar
  20. 20.
    W. Metzger, Gesetze des Sehens, Waldemar Kramer, 1975.Google Scholar
  21. 21.
    P. Monasse, Image Registration, Cahiers de l'ENS Cachan, 1999.Google Scholar
  22. 22.
    P. Monasse and F. Guichard, “Fast Computation of a Contrast Invariant Image Representation,” Cahiers de l'ENS Cachan, 9815, 1998.Google Scholar
  23. 23.
    J. Paulhan, La peinture cubiste, Gallimard, 1990.Google Scholar
  24. 24.
    P. Perona, Private communication, 1989.Google Scholar
  25. 25.
    P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Transactions on Pattern Anal. Machine Intell, Vol. 12, pp. 629–639, 1990.Google Scholar
  26. 26.
    G. Sapiro and D.L. Ringach, “Anisotropic diffusion of multivalued images with applications to color filtering,” IEEE Transactions on Image Processing, Vol. 5, pp. 1582–1586, 1996.Google Scholar
  27. 27.
    G. Sapiro and A. Tannenbaum, “On affine plane curve evolution,” Journal of Functional Analysis, Vol. 119, No. 1, pp. 79–120, 1994.Google Scholar
  28. 28.
    J. Serra, Image Analysis and Mathematical Morphology, Academic Press: New York, 1982.Google Scholar
  29. 29.
    L. Signac, D'Eug`ene Delacroix au n´eoimpressionnisme, Collection Savoir, Hermann, 1987.Google Scholar
  30. 30.
    L. Vincent, “Morphological area openings and closings for grayscale images,” in Proceedings of theWorshop “Shape in Picture”, 1992, Driebergen, The Netherlands, Springer, Berlin, pp. 197–208, 1994.Google Scholar
  31. 31.
    M. Wertheimer, “Untersuchungen zur Lehre der Gestalt, II.” Psychologische Forschung, Vol. 4, pp. 301–350, 1923.Google Scholar
  32. 32.
    D. Williams, Probability with Martingales, Cambridge Mathematical Textbooks, 1991.Google Scholar
  33. 33.
    W.P. Ziemer, Weakly Differentiable Functions, GTM 120, Springer Verlag: Berlin, 1989.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Vicent Caselles
    • 1
  • Bartomeu Coll
    • 2
  • Jean-Michel Morel
    • 3
  1. 1.Department of TechnologyUniversity Pompeu Fabra, La RamblaBarcelonaSpain
  2. 2.Department of Mathematics and InformaticsUniversity of Illes BalearsPalma de MallorcaSpain
  3. 3.Ecole Normale Supérieure de CachanCachan CedexFrance

Personalised recommendations