Skip to main content
Log in

Glutamate Receptor Desensitization Block Potentiates the Stimulated GABA Release Through External Ca2+-Independent Mechanisms from Granule Cells of Olfactory Bulb

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glutamate stimulated release of [3H]GABA was studied, during receptor desensitization block and its modulation by voltage gated Ca2+ channels, internal Ca2+ mobilization and GABA transport inhibitors from olfactory bulb slices. Under control conditions, glutamate and agonists induced release was strongly inhibited by Mg/0 Ca2+ Krebs and Cd2+ and partially inhibited by Ni2+ and nifedipine. Cyclothiazide, which blocks desensitization of glutamate receptors, potentiated glutamate, kainate, AMPA and quisqualate induced release. This effect was less dependent of entry of external Ca2+, but was inhibited by trifluoperazine and thapsigargin, inhibitors of Ca2+-calmodulin and endoplasmatic Ca2+ ATPase respectively. Nipecotic acid and NO-711, inhibitors of the GABA transporter, were also able to reduce cyclothiazide potentiated release induced by the 4 secretagogues. Under control conditions, glutamate stimulates the release of GABA in cooperation with VDCC. However, during receptor desensitization block, glutamate stimulated GABA release is mainly modulated through mechanisms dependent on internal Ca2+ mobilization and reversal of the GABA transporter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Attwell, D., Barbour, B., and Szatkowski, M. 1993. Nonvesicular release of neurotransmitter. Neuron 11:401–407.

    Google Scholar 

  2. Levi, G. and Raiteri, M. 1993. Carrier-mediated release of neurotransmitters. TINS 16:415–419.

    Google Scholar 

  3. Dunlap, K., Luebke, J. I., and Turner, T. J. 1995. Exocytotic Ca2+ channels in mammalian central neurons. Trends Neurosci. 18:89–98.

    Google Scholar 

  4. Zhang, J.-F., Rndall, A. D., Ellinor, T., Horne, W. A., Sather, W. A., Tanabe, T., Schwarz, T. L., and Tsien, R. W. 1993. Distinctive pharmacology and kinetics of cloned neuronal Ca2+ channels and their possible counterparts in mammalian CNS neurons. Neuropharmacol. 32:1075–1088.

    Google Scholar 

  5. Dingledine, R., Borges, K., Bowie, D., and Traynelis, S. F. 1999. The Glutamate receptor ion channels. Pharmacology Reviews 51:7–61. 4.

    Google Scholar 

  6. Acher, P. and Nowak, L. 1987. Electrophysiological studies of NMDA receptors. TINS 10:284–288.

    Google Scholar 

  7. Hollmann, M., Hartley, M., and Heinemann, S. 1991. Ca2+ permeability of KA-AMPA-Gated glutamate receptor channels depends on subunit composition. Science 252:1028–1031.

    Google Scholar 

  8. Verdoorn, T. A., Burnashev, N., Monyer, H., Seeburg, P. H., and Sakmann, B. 1991. Structural determinants of ion flow through recombinant glutamate receptor channels. Science 522:1715–1718.

    Google Scholar 

  9. Simpson, P. B., Challiss, R. A., and John Nahorski, S. R. 1995. Neuronal Ca2+ stores: activation and function. Trends Neurosci. 18:299–306.

    Google Scholar 

  10. Berridge, M. J. 1998. Neuronal calcium signaling. Neuron 21:13–26.

    Google Scholar 

  11. Fossier, P., Tauc, L., and Baux. G. 1999. Calcium transients and neurotransmitter release at an identified synapse. Trends Neurosci. 22:161–166.

    Google Scholar 

  12. Kenigsberg, R. L. and Trifaró, J. M. 1985. Microinjection of calmodulin antibodies into cultured chromaffin cells blocks catecholamine release in response to stimulation. Neuroscience 14:335–347.

    Google Scholar 

  13. Burgoyne, R. D. and Morgan, A. 1995. Ca2+ and secretoryvesicle dynamics. Trends Neurosci. 18:191–196.

    Google Scholar 

  14. Ghosh, A. and Greenberg M. E. 1995. Calcium signalling in neurons: molecular mechanisms and cellular consecuences. Science 268:239–247.

    Google Scholar 

  15. David J. C., Yamada K. A., Bagwe M. R., and Goldberg, M. P. 1996. AMPA receptor activation is rapidly toxic to cortical astrocytes when desensitization is blocked. J. Neurosci. 16:200–209.

    Google Scholar 

  16. Ambrosio, A. F., Silva, A. P., Malva, J. O., Mesquita, J. F., Carvalho, A. P., and Carvalho, C. M. 2000. Role of desensitization of AMPA receptors on the neuronal viability and on the [Ca++]i changes in cultured rat hippocampal neurons. Eur. J. Neurosci. 12:2021–2031.

    Google Scholar 

  17. Fradsen, A. and Schousboe, A. 1993. Excitatory amin acid mediated cytotoxicity and calcium homeostasis in cultural neurons J. Neurochem. 60:1202–1211.

    Google Scholar 

  18. Shepherd, G. and Greer, C. 1990. Olfactory bulb, in Synaptic Organization of the Brain (Shepherd G. M., ed), Oxford University Press, Oxford. 133–169.

    Google Scholar 

  19. Jaffé, E. H. and Vaello, M. L. 1989. Release of γ-[3H]Aminobutyric acid from rat olfactory bulb and substantia nigra: differential modulation by glutamic acid. J. Neurochem. 52:1766–1774.

    Google Scholar 

  20. Montague, A. A. and Greer, C. A. 1999. Differential distribution of ionotropic glutamate receptor subunits in the rat olfactory bulb. J. Comp. Neurol. 405:233–246.

    Google Scholar 

  21. Monaghan, D. T. and Cotman, C. W. 1985. Distribution of N-methyl-D-aspartate-sensitive L-3H-glutamate-binding sites in rat brain. J. Neurosci. 5:2909–2919.

    Google Scholar 

  22. Petralia, R. S. and Wenthold, R. J. 1992. Light and electron immunocytochemical localization of AMPA-selective glutamate receptors in rat brain. J. Comp. Neurol. 318:329–354.

    Google Scholar 

  23. Unnerstall, J. and Wamsley, J. 1983. Autoradiographic localization of high-affinity 3H-kainic acid binding sites in the rat forebrain. Eur. J. Pharmacol. 86:361–371.

    Google Scholar 

  24. Trombley, P. Q. and Shepherd, G. M. 1993. Synaptic transmission and modulation in the olfactory bulb. Curr. Opin. Neurobiol. 3:540–547.

    Google Scholar 

  25. Pognetto-Sassoe, M. and Ottersen, O. P. 2000. Organization of ionotropic glutamate receptors at dendrodendritic synapses in the rat olfactory bulb. J. Neuroscience 20:2192–2201.

    Google Scholar 

  26. Isaacson, J. S. and Strowbridge, B. W. 1998. Olfactory reciprocal synapses: dendritic signaling in the CNS. Neuron 20:749–761.

    Google Scholar 

  27. Jahr, C. E. and Nicoll, P. A. 1982. An intracellular analysis of dendrodendritic inhibition in the turtle in vitro olfactory bulb. J. Physiol. (Lond.) 326:213–234.

    Google Scholar 

  28. Jacobson, I., Butcher, S., and Hamberger, A. 1986. An analysis of the effects of excitatory amino acid receptor antagonists on evoked filed potentials in the olfactory bulb. Neuroscience 19:267–273.

    Google Scholar 

  29. Halabisky, B., Friedman, D., Radojicic, M., and Srtowbridge, B. W. 2000. Calcium influx through NMDA receptors directly evokes GABA release in olfactory bulb granule cells. J. Neuroscience 20:5124–5134.

    Google Scholar 

  30. Jaffé, E. H. and Garcia, Y. 1997. Excitatory sulfur-containing amino acid-induced release of [3H]GABA from rat olfactory bulb. Neurochem Res. 22:1477–1484.

    Google Scholar 

  31. Jaffé, E. H. and Cuello, A. C. 1980. Release of g-aminobutyrate from the external plexiform layer of the rat olfactory bulb: possible dendritic involvement. Neuroscience 5:1859–1869.

    Google Scholar 

  32. Sokal, R. R. and Rohlf, F. J. 1969. Biometry. W. H. Freeman and Co., San Francisco, California.

    Google Scholar 

  33. Fox, A. P., Nowycky, M. C., and Tsien, R. W. 1987. Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurones. J. Physiol. 394:149–172.14.

    Google Scholar 

  34. Yamada, K. A. and Rothman, S. M. 1992. Diazoxide blocks glutamate desensitization and prolongs excitatory postsynaptic currents in rat hippocampal neurons. J. Physiol. (Lond.) 458:409–423.

    Google Scholar 

  35. Partin, K. M., Patneau, D. K., Winters, C. A., Mayer, M. L., and Buonanno, A. 1993. Selective modulation of desensitization at AMPA versus kainate receptors by cyclothiazide and concanavalin A. Neuron 11:1069–1082.

    Google Scholar 

  36. Desai, M. A., Burnett, J. P., and Schoepp, D. D. 1994. Cyclothiazide selectively potentiates AMPA-and kainate-induced [3H]norepinephrine release from rat hippocampal slices. J. Neurochem. 63:231–237.

    Google Scholar 

  37. Hoyt, K. R., Rajdev, S., Fattman, Ch. L., and Reynolds, I. J. 1995. Cyclothiazide modulates AMPA receptor-mediated increases in intracellular free Ca2+ and Mg2+ in cultured neurons from rat brain. J. Neurochem. 64:2049–2056.

    Google Scholar 

  38. Zorumski, C. V., Yamada, K. A., Price, M. T., and Olney, J. W. 1993. A benzodiazepine recognition site associated with the non-NMDA glutamate receptor. Neuron 10:61–67.

    Google Scholar 

  39. Mosbacher, J., Schoepfer, R., Monyer, H., Burnashev, N., Seeburg, P. H., and Ruppersberg J. P. 1994. A molecular determinant for submillisecond desensitization in glutamate receptors. Science 266:1059–1062.

    Google Scholar 

  40. Vorobjev, V. S., Sharonova, I. N., Haas H. L., and Sergeeva, O. A. 2000. Differential modulation of AMPA receptors by cyclothiazide in two types of striatal neurons. Eur. J. Neurosci. 12:2871–2880.

    Google Scholar 

  41. Roufogalis, B. D., Minocherhomjee, A. M., and Al-Jobore, A. 1983. Pharmacological antagonism of calmodulin. Can. J. Biochem. Cell. Biol. 61:927–933.

    Google Scholar 

  42. Thastrup, O., Cullen, P. J., Drobak, B. K., Hanley, M. R., and Dawson, A. P. 1990. Thapsigargin, a tumor promoter, discharges intacellular Ca2+ stores by specific inhibition of the endoplasmatic reticulum Ca2+-ATPase. Proc. Natl. Acad. Sci. 8:2466–2470.

    Google Scholar 

  43. Demaurex, N., Lew, D. P., and Krause K. H. 1992. Cyclopiazonic acid depletes intracellular Ca++ stores and activates an influx pathway for divalent cations in HL-60 cells. J. Biol. Chem. 267:2318–2324.

    Google Scholar 

  44. Krogsgaard-Larsen, P. and Johnston, G. A. 1975. Inhibition of GABA uptake in rat brain slices by nipecotic acid, various isoxasoles and related compounds. J. Neurochem. 25:797–802.

    Google Scholar 

  45. Kanner, B. I. and Bendahan Radian, R. 1983. Efflux and exchange of g-aminobutyric acid and nipecotic acid catalysed by synaptic plasma membrane vesicle isolated fromimmature rat brain, Biochem. Biophys. Acta 731:54–62.

    Google Scholar 

  46. Dong, C.-J., Picaud, S. A., and Werblin, F. S. 1994. GABA transporters and GABAc-like receptors on catfish cone but not rod hotizontal cells. J. Neuroscience 14:2649–2658.

    Google Scholar 

  47. Watkins, J. C., Krogsgaard-Larsen, P., and Honore, T. 1990. Structure-activity relationship in the development of excitatory amino acid receptor agonists and competitive antagonist. TIPS 11:25–33.

    Google Scholar 

  48. García, Y., Ibarra, C., and Jaffé, E. H. 1995. NMDA and Non-NMDA Receptor-Mediated Release of [3H]GABA from granule cell dendrites of rat olfactory bulb. J. Neurochem. 64:662–669.

    Google Scholar 

  49. Bishofberger, J. and Schild, D. 1995. Different spatial patterns of [Ca2+] increase caused by N-and L-type Ca2+ channel activation in frog olfactory bulb neurones. J. Physiol. 487:305–317.

    Google Scholar 

  50. Zhou, Z. and Neher, E. 1993. Mobile and immobile calcium buffers in bovine adrenal chromaffin cells. J. Physiol. 469:245–273.

    Google Scholar 

  51. Greengard, P., Valtorat, F., Czernik, A. J., and Benfenati, F. 1993. Synaptic vesicle phosphoproteins and regulation of synaptic function. Science 259:780–785.

    Google Scholar 

  52. Risinger, C. and Bennett, M. K. 1999. Differential phosphorylation of syntaxin and synaptosome-associated protein of 25 kDA (SNAP-25) isoforms. J. Neurochem. 72:614–624.

    Google Scholar 

  53. Hashimoto, T., Ishii, T., and Ohmori, H. 1996. Release of Ca2+ is the crucial step for the potentiation of IPSCs in the culturaed cerebellar Purkinje cells of the rat. J. Physiol. 497:611–627.

    Google Scholar 

  54. Wulfert, E. and Margineanu, D. G. 1998. Thapsigargin inhibits bicuculline-induced epileptiform excitability in rat hippocampal slices. Neurosci. Lett. 243:141–143.

    Google Scholar 

  55. Akopian, A., Gabriel, R., and Witkovsky, P. 1998. Calcium release from intracellular stores inhibits GABAA-mediated currents in ganglion cells of the turtle retina. J. Neurophysiol. 80:1105–1115.

    Google Scholar 

  56. Savik, N. and Sciancalepore, M. 1998. Intracllular calcium stores modulate miniature GABA-mediated synaptic currents in neonatal rat hippocampal neurons. Eur. J. Neurosci. 10:3379–3386.

    Google Scholar 

  57. Itoh, T., Itoh, A., Horiuchi, K., and Pleasure, D. 1998. AMPA receptor-mediated excitotoxicity in human NT2-N neurons results from loss of intracellular Ca2+ homeostasis following marked elevation of intracellular Na+. J. Neurochem. 71:112–124.

    Google Scholar 

  58. Cowen, M. S. and Beart, P. M. 1998. Cyclothiazide and AMPA receptor desensitization: analyses from studies of AMPA-induced release of [3H]-noradrenaline from hippocampal slices. Br. J. Pharmacol. 123:473–480.

    Google Scholar 

  59. Jaffé, E. H., Rodriquez, A., and Figueroa, L. 1998. Ca2+ dependency of glutamate stimulated [3H]-GABA release from granule cell dendrites of rat olfactory bulb. Society Neuroscin. Abstracts 2:1314.

    Google Scholar 

  60. Alford, S., Frenguelli, B. G., Schofield, J. G., and Collingridge, G. L. 1993. Characterization of Ca2+ signals induced in hippocampal CA1 neurones by the synaptic activation of NMDA receptors. J. Physiol. 469:693–716.

    Google Scholar 

  61. Müller, W. and Connor, J. A. 1991. Dendritic spines as individual neuronal compartments for synaptic Ca2+ responses. Nature 354:73–76.

    Google Scholar 

  62. Yasuda, H., Kinoshita, S., and Tsumoto, T. 1998. Localized contribution of N-methyl-D-aspartate receptors to synaptic input-induced rise of calcium in apical dendrites of layer II /III neurons in rat visual cortex. Neuroscience 85:1011–1024.

    Google Scholar 

  63. Impagnatiello, F., Oberto, A., Longone, P., Costa, E., and Guidotti, A. 1997. 7-chloro-3-methyl-3,4-dihydro-2H-1,2,4-benzothiadiazine S,S-dioxide: a partial modulator of AMPA receptor desensitization devoid of neurotoxicity. Proc. Natl. Acad. Sci. USA 94:7053–7058.

    Google Scholar 

  64. Cebers, G. and Liljequist, S. 1995. Modulation of AMPA/ kainate receptors by cyclothiazide increases cytoplasmic free Ca2+ and 45Ca2+ uptake in brain neurons. Eur. J. Pharmacol. 18:105–115.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaffe, E.H., Figueroa, L. Glutamate Receptor Desensitization Block Potentiates the Stimulated GABA Release Through External Ca2+-Independent Mechanisms from Granule Cells of Olfactory Bulb. Neurochem Res 26, 1177–1185 (2001). https://doi.org/10.1023/A:1013930803677

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013930803677

Navigation