Skip to main content
Log in

A History of Regression and Related Model-Fitting in the Earth Sciences (1636?-2000)

  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The (statistical) modeling of the behavior of a dependent variate as a function of one or more predictors provides examples of model-fitting which span the development of the earth sciences from the 17th Century to the present. The historical development of these methods and their subsequent application is reviewed. Bond's predictions (c. 1636 and 1668) of change in the magnetic declination at London may be the earliest attempt to fit such models to geophysical data. Following publication of Newton's theory of gravitation in 1726, analysis of data on the length of a 1° meridian arc, and the length of a pendulum beating seconds, as a function of sin2(latitude), was used to determine the ellipticity of the oblate spheroid defining the Figure of the Earth. The pioneering computational methods of Mayer in 1750, Boscovich in 1755, and Lambert in 1765, and the subsequent independent discoveries of the principle of least squares by Gauss in 1799, Legendre in 1805, and Adrain in 1808, and its later substantiation on the basis of probability theory by Gauss in 1809 were all applied to the analysis of such geodetic and geophysical data. Notable later applications include: the geomagnetic survey of Ireland by Lloyd, Sabine, and Ross in 1836, Gauss's model of the terrestrial magnetic field in 1838, and Airy's 1845 analysis of the residuals from a fit to pendulum lengths, from which he recognized the anomalous character of measurements of gravitational force which had been made on islands. In the early 20th Century applications to geological topics proliferated, but the computational burden effectively held back applications of multivariate analysis. Following World War II, the arrival of digital computers in universities in the 1950s facilitated computation, and fitting linear or polynomial models as a function of geographic coordinates, trend surface analysis, became popular during the 1950–60s. The inception of geostatistics in France at this time by Matheron had its roots in meeting the evident need for improved estimators in spatial interpolation. Technical advances in regression analysis during the 1970s embraced the development of regression diagnostics and consequent attention to outliers; the recognition of problems caused by correlated predictors, and the subsequent introduction of ridge regression to overcome them; and techniques for fitting errors-in-variables and mixture models. Improvements in computational power have enabled ever more computer-intensive methods to be applied. These include algorithms which are robust in the presence of outliers, for example Rousseeuw's 1984 Least Median Squares; nonparametric smoothing methods, such as kernel-functions, splines and Cleveland's 1979 LOcally WEighted Scatterplot Smoother (LOWESS); and the Classification and Regression Tree (CART) technique of Breiman and others in 1984. Despite a continuing improvement in the rate of technology-transfer from the statistical to the earth-science community, despite an abrupt drop to a time-lag of about 10 years following the introduction of digital computers, these more recent developments are only just beginning to penetrate beyond the research community of earth scientists. Examples of applications to problem-solving in the earth sciences are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Abbe, C., 1871, A historical note on the method of least squares: Am. Jour. Science, Ser. 3, v. 1, no. 6, p. 411–415.

    Google Scholar 

  • Abbey, S., 1986, A study of robust estimators: Geostandards Newsletter, v. 10, no. 2, p. 159–168.

    Google Scholar 

  • Abbey, S., 1992, Evaluation and application of reference materials for the analysis of rocks and minerals: Chem. Geology, v. 95, no. 1-2, p. 123–130.

    Google Scholar 

  • Adcock, R. J., 1878, A problem in least squares: The Analyst (Des Moines, Iowa), v. 5, p. 53–54.

    Google Scholar 

  • Adrain, R., 1808, Research concerning the probabilities of the errors which happen in making observations: The Analyst or Mathematical Mus. Philadelphia, v. 1, no. 4, p. 93–109.

    Google Scholar 

  • Adrain, R., 1818, Investigation of the Figure of the Earth, and of the gravity in different latitudes:Am.Philosophical Soc.Trans., n.s., v. 1, p. 119–135.

    Google Scholar 

  • Agocs, W. B., 1951, Least squares residual anomaly determination: Geophysics, v. 16, no. 4, p. 686–696.

    Google Scholar 

  • Agterberg, F. P., 1974, Automatic contouring of geological maps to detect target areas for mineral exploration: Math. Geology, v. 6, no. 4, p. 373–395.

    Google Scholar 

  • Agterberg, F. P., 1988, Quality of time scales-a statistical appraisal, in Merriam, D. F., ed., Current Trends in Geomathematics: Plenum, New York, p. 57–103.

    Google Scholar 

  • Agterberg, F. P., 1990, Automated stratigraphic correlation: Elsevier, Amsterdam, 424 p.

    Google Scholar 

  • Agterberg, F. P., 1994, Estimation of the Mesozoic geological time scale: Math. Geology, v. 26, no. 7, p. 857–876.

    Google Scholar 

  • Agterberg, F. P., and Cabilio, P., 1969, Two-stage least-squares model for the relationship between mappable geological variables: Math. Geology, v. 6, no. 4, p. 37–53.

    Google Scholar 

  • Agterberg, F. P., and Chung, C. F., 1975, A computer-program for polynomial trend-surface analysis: Geol. Survey Canada Paper, v. 75-21, p. 1–16.

    Google Scholar 

  • Agterberg, F. P., and Robinson, S. C., 1972, Mathematical problems in geology [with discussion]: Intern. Statistical Inst. Bull. v. 44, no. for 1971, Book 1, p. 567–595.

    Google Scholar 

  • Airy, G. B., 1845, Figure of the Earth, in Smedley, E., Rose, H. J., and Rose, H. J., eds., Encyclopaedia Metropolitana, v. 5. Fellowes and Rivington, London, p. 175–210.

    Google Scholar 

  • Airy, G. B., 1861, On the algebraical and numerical theory of errors of observations and the combination of observations: Macmillan, Cambridge, p. 103 C (loose undated supplement) p. 107-118.

    Google Scholar 

  • Aitchison, J., 1986, The statistical analysis of compositional data: Chapman and Hall, London, 416 p.

    Google Scholar 

  • Albarede, F., and Provost, A., 1977, Petrological and geochemical mass-balance equations: an algorithm for least-square fitting and general error analysis: Computers & Geosciences, v. 3, no. 2, p. 309–326.

    Google Scholar 

  • Alkins, W. E., 1920, Morphogenesis of Brachiopoda. I. Reticularia lineata (Martin), Carboniferous Limestone: Mem. and Proc. Manchester Lit. and Phil. Soc., v. 64, no. 2, p. 1–11.

    Google Scholar 

  • Alldredge, J. R., and Alldredge, N. G., 1978, Geostatistics: a bibliography: Intern. Stat. Review, v. 46, no. 1, p. 77–88.

    Google Scholar 

  • Allen, P., and Krumbein, W. C., 1962, Secondary trend components in the top Ashdown pebble bed, a case history: Jour. Geology, v. 70, no. 5, p. 507–538.

    Google Scholar 

  • Anderson, T. W., Gupta, S. D., and Styan, G. P. H., 1972, A bibliography of multivariate statistical analysis: Oliver and Boyd, Edinburgh, 642 p.

    Google Scholar 

  • Andrews, D. F., 1974, A robust method for multiple linear regression: Technometrics, v. 16, no. 4, p. 523–531.

    Google Scholar 

  • Anonymous, 1821, Dissertation sur la recherche du milieu le plus probable, entre les r ´ esultats de plusieurs observations ou experi´ ences: Annales de Mathematiques, v. 12, p. 181–204.

  • Anonymous, 1838, Introduction: Jour. Stat. Soc. London, v. 1, no. 1, p. 1–5.

  • Anscombe, F. J., 1961, Examination of residuals, in Neyman, J., ed., Proc. Fourth Berkely Symp. Mathematical Statistics and Probability, 4 vols: Univ. California Press, Berkeley, v. 1, p. 1–36.

    Google Scholar 

  • Anscombe, F. J., and Tukey, J.W., 1963, The examination and analysis of residuals: Technometrics, v. 5, no. 1, p. 141–160.

    Google Scholar 

  • Anselone, P. M., and Laurent, P. J., 1968, A general method for the construction of interpolating or smoothing spline functions: Numerische Mathematik, v. 12, p. 66–82.

    Google Scholar 

  • Baird, A. K., McIntyre, D. B., and Welday, E. E., 1967, Geochemical and structural studies in batholithic rocks of southern California: Part II, Sampling of the Rattlesnake Mountain Pluton for chemical composition, variability, and trend analysis: Geol. Soc. America Bull., v. 78, no. 2, p. 191–222.

    Google Scholar 

  • Bannister, F. A., 1931, A relation between the density and refractive index of silicate glasses, with application to the determination of imitation gemstones: Mineral. Magazine, v. 22, no. 126, p. 136–154.

    Google Scholar 

  • Barlow, P., 1833, On the present situation of the magnetic lines of equal variation and their changes on the terrestrial surface: Royal Society Philosophical Trans., v. 123, p. 667–673.

    Google Scholar 

  • Bartlett, M. S., 1949, Fitting a straight line when both variables are subject to error: Biometrics, v. 5, no. 3, p. 207–212.

    Google Scholar 

  • Barton, 1929, Control and adjustment of surveys with the magnetometer and torsion balance: Am. Assoc. Petroleum Geologists Bull., v. 13, no. 9, p. 1163–1186.

    Google Scholar 

  • Bauer, L. A., 1913, The instruments and methods of research: Proc.Washington Philosophical Soc., v. 15, no. for 1906-1910, p. 103–126.

    Google Scholar 

  • Belonin, M. D., and Zhukov, I. M., 1970, Geometrical properties of the subsurface of the Alekseevka Uplift in the Kuibyshev District, in Romanova, M. A., and Sarmanov, O. V., eds., Topics in Mathematical Geology: Plenum Press, New York, p. 186–199.

    Google Scholar 

  • Belsley, D. A., Kuh, E., and Welsch, R., 1980, Regression diagnostics: identifying influential data and sources of collinearity: John Wiley & Sons, New York, 292 p.

    Google Scholar 

  • Berkson, J., 1944, Application of the logistic function to bioassay: Jour. Am. Stat. Assoc., v. 39, no. 227, p. 357–365.

    Google Scholar 

  • Bessel, F. W., 1841, Determination of the axes of the elliptic spheroid of revolution which most nearly corresponds with the existing measurements of arcs of the meridian: Taylor's Scientific Mem., v. 2, no. 7, p. 387–400.

    Google Scholar 

  • Bessel, F. W., and Baeyer, J. J., (1838) 1876, Gradmessung in Ost-Preussen und ihre Verbindung mit preussische und russische Dreicksketten, in Englemann, R., ed., Abhandlungen von Friedrich Wilhelm Bessel. III. Geodaesie, Physik, Verschiedenes, Literatur: Englemann, Berlin, p. 62–138.

    Google Scholar 

  • Bickel, P. J., 1965,Onsome robust estimates of location: Ann. Math. Statistics, v. 36, no. 3, p. 847–858.

    Google Scholar 

  • Biot, J. B., 1816, Traité de physique expérimentale et mathématique:, v. 3, Deterville, Paris, 516 p.

  • Biot, J. B., 1829, Mémoire sur la Figure de la Terre: Mémoires de l'Académie Royale des Sciences de l'Institut de France, Paris, v. 8, p. 1–56.

    Google Scholar 

  • Birkhoff, G., 1980, Computing developments 1935-1955, as seen from Cambridge, U.S.A., in Metropolis, N., Howlett, J., and Rota, G.-C., eds., A History of Computing in the Twentieth Century: Academic Press, New York, p. 21–30.

    Google Scholar 

  • Bond, H., 1668, The variations of the magnetic needle predicted for many years following: Royal Society London, Philosophical Trans. v. 3, p. 789–790.

    Google Scholar 

  • Bond, H., 1673, Untitled broadsheet: British Library, Add.ms. 4393, London, ff. 38.

  • Bond, H., 1674, The use of the Inclynatorie Magneticall Needle to find the longitude by the use of the Carolina tables: British Library, London, Add. ms. 4393, ff. 7-20.

    Google Scholar 

  • Bond, H., 1676, The longitude found: or, a treatise shewing an easie and speedy way, as well by night as by day, to find the longitude, having but the latitude of the place, and the inclination of the Magnetical Inclinatorie Needle: Godbid, London, 65 p.

    Google Scholar 

  • Bowditch, N., 1829-39, Méchanique Céleste by the Marquis de La Place translated with a commentary by Nathaniel Bowditch: 4 vols., Hilliard, Gray, Little andWilkins, Boston, 746 p. (1829); 990 p. (1832); 910 p. (1834); 1018 p. (1839).

    Google Scholar 

  • Bowen, N. L., 1928, The evolution of the igneous rocks: Princeton Univ. Press, Princeton, New Jersey, 332 p.

    Google Scholar 

  • Box, G. E. P., 1953, Non-normality and tests on variances: Biometrika, v. 40, no. 3-4, p. 318–335.

    Google Scholar 

  • Breiman, L., Friedman, J. H., Olshen, R., and Stone, C. J., 1984, Classification and regression trees:Wadsworth, Belmont, California, 358 p.

  • Brinkley, S. R., 1946, Note on the conditions of equilibrium for systems of many constituents: Jour. Chemical Physics, v. 14, p. 563–566.

    Google Scholar 

  • Brinkmann, R., 1929, Statistisch-biostratigraphische Untersuchungen an mitteljurassischen Ammonitenüber Artbegriff und Stammesentwicklung: Abhandlungen der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-physikalische Klasse, f., v. 13, no. 3, p. 1–249.

    Google Scholar 

  • Bullard, E. C., 1936, Gravity measurements in East Africa: Royal Soc. Philosophical Trans., v. A235, no. 757, p. 445–531.

    Google Scholar 

  • Bullard, E. C., 1939, Heat flow in South Africa: Royal Soc. London Philosophical Trans., v. A173, no. 955, p. 474–502.

    Google Scholar 

  • Bullard, E. C., Gaskell, T. F., Harland, W. B., and Kerr-Grant, C., 1940, Seismic investigations on the Palaeozoic floor of East England: Royal Soc. London Philosophical Trans., v. A239, no. 800, p. 29–93.

    Google Scholar 

  • Bumstead, H. A., and Wheeler, L. P., 1904, On the properties of a radio active gas found in the soil and water near New Haven: Am. Jour. Science. Ser. 4, v. 17, no. 98, p. 97–111.

    Google Scholar 

  • Burma, B. H., 1949, Studies in quantitative paleontology. II. Multivariate analysis-a new analytical tool for paleontology and geology: Jour. Paleontology, v. 23, no. 1, p. 95–103.

    Google Scholar 

  • Butler, R. D., 1933, Immersion liquids of intermediate refraction (1.450-1.630): Am. Mineralogist, v. 18, no. 9, p. 386–401.

    Google Scholar 

  • Carroll, R. J., and Ruppert, D., 1996, The use and misuse of orthogonal regression in linear errors-in-variables models: Am. Statistician, v. 50, no. 1, p. 1–6.

    Google Scholar 

  • Carroll, R. J., and Spiegelmann, C. H., 1992, Diagnostics for nonlinearity and heteroscedasticity in errors-in-variables regression: Technometrics, v. 32, no. 2, p. 186–196.

    Google Scholar 

  • Chayes, F., 1970, On deciding whether trend surfaces of progressively higher order are meaningful: Geol. Soc. America Bull., v. 81, no. 4, p. 1273–1278.

    Google Scholar 

  • Chebyshev, P. L., (1855) 1899, Sur les fractions continues; orig. in: Journal de Mathématiques Pures et Appliqués, v. 3, no. 15; reprinted in Markoff, A., and Sonin, N., eds., 1899, Oeuvres de P. L. Tchebychev: Glasounof and Eggers, St. Petersberg, v. 1, p. 203–230.

    Google Scholar 

  • Chebyshev, P. L., (1859) 1899, Sur l'interpolation par laméthode des moindres carrés; orig. in M´emoires de l'Académie Imperiale des sciences de St. Petérsbourg. ser. 7. v. 1, no. 5; reprinted in Markoff, A., and Sonin, N., eds., Oeuvres de P. L. Tchebychev; Glasounof and Eggers, St. Petersberg, v. 1, p. 473–498.

    Google Scholar 

  • Chebyshev, P. L., (1864) 1899, Sur l'interpolation; orig. in: Procédé de l'Académie imperiale des Sciences de St. Petérsbourg, v. 4, no. 5; reprinted in Markoff, A., and Sonin,N., eds., 1899, Oeuvres de P. L. Tchebychev: Glasounof and Eggers, St. Petersberg, v. 1, p. 541–560.

    Google Scholar 

  • Chebyshev, P. L., (1875) 1907, Sur l'interpolation des valeurs équidistantes; orig. in Procédé de l'Académie imperiale des Sciences de St. Pet´ersbourg, v. 25, no. 5; reprinted in Markoff, A., and Sonin,N., eds., Oeuvres deP.L. Tchebychev: Glasounof and Eggers, St. Petersberg, v. 2, p. 219-24.

  • Cheng, C.-L., and Schneeweiss, H., 1998, Polynomial regression with errors in the variables: Jour. Royal Stat. Soc., v. B60, no. 1, p. 189–199.

    Google Scholar 

  • Chork, C. Y., 1991, An assessment of least median of squares regression in exploration geochemistry: Jour. Geochem. Exploration, v. 41, no. 3, p. 325–340.

    Google Scholar 

  • Chung, C. F., and Agterberg, F. P., 1980, Regression models for estimating mineral resources from geological map data: Math. Geology, v. 12, no. 5, p. 473–488.

    Google Scholar 

  • Clark, I., 1977a, SNARK-A four-dimensional trend-surface program: Computers & Geosciences, v. 3, no. 2, p. 283–308.

    Google Scholar 

  • Clark, I., 1977b, ROKE, a computer program for nonlinear leastsquares decomposition of mixtures of distributions: Computers & Geosciences, v. 3, no. 2, p. 245–256.

    Google Scholar 

  • Clark, M.W., 1977, GETHEN: a computer program for the decomposition of mixtures of two normal distributions by the method of moments: Computers & Geosciences, v. 3, no. 2, p. 257–267.

    Google Scholar 

  • Cleveland, W. S., 1979, Robust locally weighted regression and smoothing scatterplots: Jour. Am. Stat. Assoc., v. 74, no. 368, p. 829–836.

    Google Scholar 

  • Cochran, W. G., 1940, The analysis of variance when experimental errors follow the poisson or binomial law: Ann. Math. Statistics, v. 11, no. 3, p. 335–347.

    Google Scholar 

  • Cohen, R. E., 1986, Thermodynamic solution properties of aluminous clinopyroxenes: nonlinear least squares refinements: Geochem. et Cosmochim. Acta, v. 50, no. 4, p. 563–575.

    Google Scholar 

  • Cole, A. J., ed., 1969, An iterative approach to the fitting of trend surfaces. Kansas Geol. Survey, Computer Contrib. 37, 27 p.

  • Connor, J. J., and Miesch, A. T., 1964, Analysis of geochemical prospecting data from the Rocky Range, Beaver County, Utah: U. S. Geol. Survey Prof. Paper, v. 475D, p. 79–83.

    Google Scholar 

  • Cook, R. D., 1977, Detection of influential observations in linear regression: Technometrics, v. 19, no. 1, p. 15–17.

    Google Scholar 

  • Cook, R. D., and Weisberg, S., 1982, Residuals and influence in regression: Chapman and Hall, London, 227 p.

    Google Scholar 

  • Cooley, R. L., 1982, Incorporation of prior information on parameters into nonlinear regression groundwater flow models: I, Theory: Water Resources Research, v. 18, no. 4, p. 965–976.

    Google Scholar 

  • Cooley, R. L., 1983, Incorporation of prior information on parameters into nonlinear regression groundwater flow models: II, Applications: Water Resources Research, v. 19, no. 3, p. 662–676.

    Google Scholar 

  • Cotes, R., 1722, Aestimatio errorum in mixta mathesi, per variationes partium trianguli plani et spherici, in Smith, R., ed., Harmonia Mensuram, sive Analysis et Synthesis. II. Opuscula Mathematica: Cambridge, p. 1-22.

  • Craven, P., and Wahba, G., 1979, Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation: Numerische Mathematik, v. 31, p. 377–403.

    Google Scholar 

  • Cressie, N., 1990, The origins of Kriging: Math. Geology, v. 22, no. 3, p. 239–252.

    Google Scholar 

  • Cressie, N., 1991, Statistics for spatial data: John Wiley & Sons, New York, 900 p.

    Google Scholar 

  • Cressie, N., and Hawkins, D. C., 1980. Robust estimation of the variogram: Math. Geology, v. 12, no. 2, p. 115–125.

    Google Scholar 

  • Curry, H. B., and Schoenberg, I. J., 1966, On Polya frequency functions. IV: Jour. d'Analyse Math´ematique, v. 17, p. 71–107.

    Google Scholar 

  • Dahlberg, E. C., 1969, Use of model for relating geochemical prospecting data to geologic attributes of a region, South Mountain, Pennsylvania: Quart. Jour. Colorado Sch. Mines, v. 64, no. 1, p. 195–216.

    Google Scholar 

  • Dahlberg, E. C., and Griffiths, J. C., 1967, Defining gradients in a sample of sedimentary rock: Sedimentology, v. 8, no. 4, p. 291–309.

    Google Scholar 

  • David, M., 1977, Geostatistical ore reserve estimation: Elsevier, Amsterdam, 364 p.

    Google Scholar 

  • Davis, D.W., 1982, Optimal linear regression and error estimation applied to U-Pb data: Can. Jour. Earth Sciences, v. 19, no. 11, p. 2141–2149.

    Google Scholar 

  • Davis, J.C., 1973, Statistics and data analysis in geology: JohnWiley & Sons, New York, 550 p.

    Google Scholar 

  • Dawson, K. R., and Whitten, E. H. T., 1962, The quantitative mineralogical composition and variation of the Lacorne, La Motte, and Preissac Granitic Complex, Quebec, Canada: Jour. Petrology, v. 3, no. 1, p. 1–37.

    Google Scholar 

  • DeGeoffroy, J. E., and Wignall, T. K., 1971,Aprobabilistic appraisal of mineral resources in a portion of the Grenville Province of the Canadian Shield: Econ. Geology, v. 66, no. 3, p. 466–479.

    Google Scholar 

  • DeLury, D. B., 1950, Values and integrals of the orthogonal polynomials up to n D 26: Univ. Toronto Press, Toronto, 33 p.

    Google Scholar 

  • Doveton, J. H., and Parsley, A. J., 1970, Experimental evaluation of trend surface distortions induced by inadequate data-point distributions: Trans. Instit. Mining and Metallurgy, London, v. B79, no. 4, p. 197–207.

    Google Scholar 

  • Draper, N. R., and Smith, H., 1966, Applied regression analysis: John Wiley & Sons, New York, 407 p.

    Google Scholar 

  • Draper, N. R., and Smith, H., 1967, Selecting the “best” regression equation: Kansas Geol. Survey, Computer Contrib. 12, p. 1–3.

    Google Scholar 

  • Dubrule, O., 1984, Comparing splines and kriging: Computers & Geosciences, v. 10, no. 2-3, p. 327–338.

    Google Scholar 

  • Dunnington, G. W., 1955, Carl Friedrich Gauss. Titan of Science: Hafner, New York, 479 p.

    Google Scholar 

  • Dwyer, P. S., and Waugh, F. V., 1953, On errors in matrix inversion: Jour. Am. Stat. Assoc., v. 48, no. 262, p. 289–319; Corrigendum no. 264, p. 911-912.

    Google Scholar 

  • Eckhardt, D. A., Flipse, W. J., and Oaksford, E. T., 1989, Relation between land use and ground-water quality in the upper glacial aquifer in Nassau and Suffolk Counties, Long Island, NY: U.S. Geol. SurveyWater Resources Invest. Rept. no. 86-4142, p. 1–26.

    Google Scholar 

  • Edgeworth, F. Y., 1883, The method of least squares: Philosophical Magazine, Ser. 5, v. 16, no. 101, p. 360–375.

    Google Scholar 

  • Edgeworth, F. Y., 1887, On observations relating to several quantities: Hermathena, Dublin, v. 6, p. 279–285.

    Google Scholar 

  • Edgeworth, F. Y., 1892, Correlated averages: Philosophical Magazine, Ser. 5., v. 34, no. 207, p. 190–204.

    Google Scholar 

  • Efroymson, M. A., 1960, Multiple regression analysis, in Ralston, A., and Wilf, H. S., eds., Mathematical Methods for Digital Computers: John Wiley & Sons, New York, p. 191–203.

    Google Scholar 

  • Eisenhart, C., 1961, Boscovich and the combination of observations, in Whyte, L. L., ed., Roger Joseph Boscovich, S. J., F. R. S., 1711-1787. Studies of his life and work on the 250th anniversary of his birth: Allen and Unwin, London, p. 200–212.

    Google Scholar 

  • Eisenhart, C., ed., 1978, Carl Friedrich Gauss, in Kruskal, W. H., and Tanur, J. M., eds., International Encyclopaedia of Statistics, 1: Free Press, New York, p. 378–386.

  • Encke, J. F., 1834, Ueber die Methode der kleinsten Quadrate. I.: Berliner astronomische Jahrbuch, no. for 1834, p. 249–312.

  • Encke, J. F., 1835, Ueber die Methode der kleinsten Quadrate. II.: Berliner astronomische Jahrbuch, no. for 1835, p. 253–320.

  • Encke, J. F., 1836, Ueber die Methode der kleinsten Quadrate. III.: Berliner astronomische Jahrbuch, no. for 1836, p. 253–308.

    Google Scholar 

  • Encke, J. F., 1841,Onthe method of least squares:Taylor's Scientific Mem., v. 2, no. 7, p. 317–369.

    Google Scholar 

  • Eskola, P., 1922, The mineral facies of rocks: Norsk geologisk Tidsskrift, v. 6, no. 1, p. 143–194.

    Google Scholar 

  • Esler, J. E., Smith, P. E., and Davis, J. C., 1968, KWIKR8-A FORTRAN IV program for multiple regression and geologic trend analysis: Kansas Geol. Survey, Computer Contrib. 28, 31 p.

  • Evans, G., Howarth, R. J., and Nombela, M. A., in prep., Metals in the sediments of the Ensenada de San Simòn (inner Ría de Vigo), Galicia, N.W. Spain.

  • Everett, R. R., 1980, WHIRLWIND, in Metropolis, N., Howlett, J., and Rota, G.-C., eds.,AHistory of Computing in theTwentieth Century: Academic Press, New York, p. 365–384.

    Google Scholar 

  • Fischer, I., 1975, The figure of the Earth-changes in concepts: Geophys. Surveys, v. 2, no. 1, p. 3–54.

    Google Scholar 

  • Fisher, R. A., 1922a, The goodness of fit of regression formulae and the distribution of regression coefficients: Jour. Royal Stat. Soc., v. 85, no. 4, p. 597–612.

    Google Scholar 

  • Fisher, R. A., 1922b, On the mathematical foundations of theoretical statistics: Philosophical Trans. Royal Society, London, v. A222, p. 309–368.

    Google Scholar 

  • Fisher, R. A., 1925, The application of “Student's” distribution: Metron, v. 5, no. 3, p. 90–104.

    Google Scholar 

  • Forbes, J.D., 1840, Account of some experiments made in different parts of Europe, on terrestrial magnetic intensity, particularly with reference to the effect of height: Royal Society Edinburgh Trans., v. 14, pt. 1, p. 1–29.

    Google Scholar 

  • Forrest, D.W., 1974,Francis Galton.The life and work of aVictorian genius. Elek, London, 340 p.

    Google Scholar 

  • Fox, W. T., 1967, FORTRAN IV program for vector trend analysis of directional data: Kansas Geol. Survey, Computer Contr. 11, 36 p.

  • Freund, R. J., 1963,Awarning of roundoff errors in regression: The Am. Statistician, v. 17, no. 5, p. 13–15.

    Google Scholar 

  • Furnival, G. M., 1971, All possible regressions with less computation: Technometrics, v. 13, no. 2, p. 403–408.

    Google Scholar 

  • Furnival, G. M., and Wilson, R. W., 1974, Regression by leaps and bounds: Technometrics, v. 16, no. 4, p. 499–511.

    Google Scholar 

  • Galloway, T., 1846, On the application of the method of least squares to the determination of the most probable errors in a portion of the Ordnance Survey of England: Royal Astron. Soc., London Mem., v. 15, p. 23–69.

    Google Scholar 

  • Galton, F., 1875, Statistics by intercomparison, with remarks on the law of frequency of error: Philosophical Magazine, Ser 4, v. 49, no. 322, p. 33–46.

    Google Scholar 

  • Galton, F., 1877, Typical laws of heredity: Nature, v. 15, no. 388, p. 492–495, no. 389, p. 512-514, no. 390, 532-533.

    Google Scholar 

  • Galton, F., 1888, Co-relations and their measurement, chiefly from anthropometric data: Proc. Royal Society, London, v. 45, no. 274, p. 135–145.

    Google Scholar 

  • Galton, F., 1889, Natural inheritance: Macmillan, London, 259 p.

    Google Scholar 

  • Ganse, R. A., Amemiya, Y., and Fuller, W. A., 1983, Prediction when both variables are subject to error, with application to earthquake magnitudes: Jour. Am. Stat. Assoc., v. 78, no. 4, p. 761–765.

    Google Scholar 

  • Garrett, R. G., 1983, Opportunities for the 80s: Math. Geology, v. 15, no. 2, p. 385–398.

    Google Scholar 

  • Garrett, R. G., Goss, T. I., and Poirier, P. R., 1982, Multivariate outlier detection-an application to robust regression in the earth sciences (abst.): Joint Stat. Meetings Am. Stat. Assoc. (Cincinnati, Ohio) p. 101.

  • Gastwirth, J., 1966, On robust procedures: Jour. Am. Stat. Assoc., v. 61, no. 316, p. 929–948.

    Google Scholar 

  • Gauss, C. F., 1809, Determinatio orbitae observationibus quotcunque maxime satisfacientis, in Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientium: Perthes and Besser, Hamburg, p. 205–224; English transl., Theory of the motion of the heavenly bodies moving about the sun in conic sections [selected extracts], C. H. Davis transl. (1857), in Shapley, H., and Howarth, H. E., eds., 1929, A Source Book in Astronomy: McGraw-Hill, New York, p. 183-195.

    Google Scholar 

  • Gauss, C. F., 1811, Disquisito de elementis ellipticis Palladis ex oppositionibus 1803, 1804, 1805, 1807, 1808, 1809: Commentationes societas regiae scientiarum Göttingensis recentiores, v. 1, p. 1–26.

    Google Scholar 

  • Gauss, C. F., 1823, Theoria combinationis observationum erroribus minimis obnoxiae: Commentationes societas regiae scientiarum Göttingensis recentiores, v. 5, no. for 1821-3, p. 33–90.

    Google Scholar 

  • Gauss, C. F., 1832, Intensitas vis magneticae terrestris ad mensuram absolutam revocata: Göttingische gelehrte Anzeigen, v. 205, no. 7, p. 2041–2058.

    Google Scholar 

  • Gauss, C. F., 1839, Allegemeine Theorie des Erdmagnetismus, in Gauss,C. F., and Weber,W., Resultate aus den Beobachtungen des magnetischen Vereins in Jahre 1838: Weidmann, Leipzig, p. 1–57.

    Google Scholar 

  • Gauss, C. F., and Weber, W., 1839, Resultate aus den Beobachtungen des magnetischen Vereins im Jahre 1838: Weidmann, Leipzig, 151 p. C71 unnumbered p. tables. Dieterich, Göttingen.

    Google Scholar 

  • Gauss, C. F., and Weber, W., 1840, Atlas des Erdmagnetismus: nachden elementen der theorie entworfen. Supplement zuden Resultaton aus den Beobachtungen des magnetischen. Vereins untermit wirkung von C. W. B. Goldschmidt: Wiedmann, Leipzig, 36 p. C8 unnumbered p. tables CXVIII plates.

    Google Scholar 

  • Gibson, M. O., 1941, Network adjustment by least squares- alternative formulation and solution by iteration: Geophysics, v. 6, no. 2, p. 168–179.

    Google Scholar 

  • Gilbert, W., 1600, De magnete, magnetisque corporibus, et de magneto magnete tellure; Physiologia nova, plurimis and argumentis, and experimentis demonstrata: Short, London, p. 240; reprinted Culture et Civilisation, Brussels (1967).

  • Godwin, C. I., and Sinclair, A. J., 1979, Application of multiple regression analysis to drill-target selection, Casino porphyry copper-molybdenum deposit,Yukon Territory, Canada: Trans. Institution of Mining and Metallurgy, London, v. B88, no. 3, p. 93–106.

    Google Scholar 

  • Good, D. I., 1964, FORTRAN II trend-surface program for the IBM 1620: Kansas Geol. Survey, Spec. Distrib. Publ. 14, 54 p.

  • Govindaraju, K., 1987, 1987 compilation on Ailsa Craig granite AC-E with the participation of 128 GIT-IWG laboratories: Geostandards Newsletter, v. 11, no. 2, p. 203–255.

    Google Scholar 

  • Grant, F., 1957, A problem in the analysis of geophysical data: Geophysics, v. 22, no. 2, p. 309–344.

    Google Scholar 

  • Griffin, W. R., 1949, Residual gravity in theory and practice: Geophysics, v. 14, no. 1, p. 39–56.

    Google Scholar 

  • Griffiths, J. C., 1958, Petrography and porosity of the Cow Run Sand, St. Marys, West Virginia: Jour. Sedimentary Petrology, v. 28, no. 1, p. 15–30.

    Google Scholar 

  • Griffiths, J. C., 1967, Mathematical exploration strategy and decision-making: Proc. Panel Discussion 5, 7th World Petroleum Congress (Mexico City), p. 87–98.

  • Grossman, M., 1971, Parametric curve fitting: Computer Jour. v. 14, no. 2, p. 169–172.

    Google Scholar 

  • Hald, A., 1998, A history of mathematical statistics from 1750 to 1930: John Wiley & Sons, New York, p. 795.

    Google Scholar 

  • Hall, A., 1969, Regional variation in the composition of British Caledonian Granites: Jour. Geology, v. 77, no. 4, p. 466–481.

    Google Scholar 

  • Halley, E., 1701, A new and correct chart shewing the variations of the compass in the western and southern oceans as observed in ye year 1700 by his Ma.ties Command by Edm. Halley: Mount and Page, London, 1 sheet.

    Google Scholar 

  • Hampel, F., 1971,Aqualitative definition of robustness: Ann. Math. Statistics, v. 42, no. 6, p. 1887–1896.

    Google Scholar 

  • Hampel, F. R., 1974, The influence curve and its role in robust estimation: Jour. Am. Stat. Assoc., v. 69, no. 346, p. 383–393.

    Google Scholar 

  • Harbaugh, J. W., 1963, BALGOL Program for trend-surface mapping using andIBM7090 computer: Kansas Geol. Survey, Spec. Distrib. Publ. 3, 54 p.

  • Harbaugh, J.W., 1964, A computer method for four-variable trend analysis illustrated by a study of oil-gravity variations in southeastern Kansas: Kansas Geol. Survey Bull. 171, 58 p.

  • Harbaugh, J. W., and Merriam, D. F., 1964, Trend surface analysis of regional and residual components of geologic structure in Kansas: Kansas Geol. Survey Spec. Dist. Publ. 11, 27 p.

  • Harbaugh, J.W., and Preston, F.W., 1965, Fourier series analysis in geology, in Short Course and Symp. Computers and Computer Applications in Mining and Exploration, v. 1, College of Mines, Univ. Arizona, p. R1-R46.

  • Harding, J. P., 1949, The use of probability paper for the graphical analysis of polymodal frequency distributions: Jour. Marine Biological Assoc. United Kingdom, v. 28, no. 1, p. 141–153.

    Google Scholar 

  • Hartley, H. O., 1961, The modified Gauss-Newton method for fitting nonlinear regression functions by least squares: Technometrics, v. 3, no. 2, p. 269–280.

    Google Scholar 

  • Haughton, D., 1997, Packages for estimating finite mixtures: a review: Am. Statistician, v. 51, no. 2, p. 194–205.

    Google Scholar 

  • Hellman, G., 1909, Magnetische Kartographie in historischkritischer Darstellung: Veröffentlichungen des Königlich Preußischen Meteorologischen Instituts no. 215, v. 3, no. 3, p. 1–61.

    Google Scholar 

  • Helsel, D. R., and Hirsch, R. M., 1992, Statistical methods in water resources: Elsevier, Amsterdam, 522 p.

    Google Scholar 

  • Henriques, A., 1958, The influence of cations on the optical properties of clinopyroxenes. II: Arkiv Mineralogi Geologi, v. 2, no. 4, p. 381–384.

    Google Scholar 

  • Hersh, A. H., 1934, Evolutionary relative growth in the Titanotheres: Am. Naturalist, v. 68, no. 719, p. 537–561.

    Google Scholar 

  • Hey, M. H., 1933, Studies on zeolites. Part V. Mesolite: Mineral. Magazine, v. 23, no. 144, p. 421–447.

    Google Scholar 

  • Hey, M. H., 1956, On the correlation of physical properties with chemical composition in multivariate systems: Mineral. Magazine, v. 31, no. 232, p. 69–95.

    Google Scholar 

  • Hinisch, M. J., and Talwar, P. P., 1975, A simple method for robust regression: Jour. Am. Stat. Assoc., v. 70, no. 349, p. 113–119.

    Google Scholar 

  • Hoaglin, D. C., and Welsch, R., 1978, The hat matrix in regression and ANOVA: Am. Statistician, v. 32, no. 1, p. 17–22.

    Google Scholar 

  • Hocking, R. R., 1983, Developments in linear regression methodology: 1959-1982 [with discussion]: Technometrics, v. 25, no. 3, p. 219–249.

    Google Scholar 

  • Hocking, R. R., and Leslie, R. N., 1967, Selection of the best subset in regression analysis: Technometrics, v. 9, no. 4, p. 531–540.

    Google Scholar 

  • Hoerl, A. E., 1962, Application of ridge analysis to regression problems: Chemical Engineering Progress, v. 58, p. 54–59.

    Google Scholar 

  • Hoerl, A. E., and Kennard, R.W., 1970a, Ridge regression: biased estimation for nonorthogonal problems: Technometrics, v. 12, no. 1, p. 55–67.

    Google Scholar 

  • Hoerl, A. E., and Kennard, R.W., 1970b, Ridge regression: applications to nonorthogonal problems: Technometrics, v. 12, no. 1, 69–82.

    Google Scholar 

  • Hood, K., Nix, B. A. J., and Iles, T. C., 1999, Asymptotic information and variance-covariance matrices for the linear structural model: The Statistician, v. 48, no. 4, p. 477–493.

    Google Scholar 

  • Horner, J. K., 1836, Tellurischer Magnetismus, in Gehler, J. S. T., ed., Physikalisches Wörterbuch oder Versuch einer Erklärung der vornehmsten Begriffe und Kunstwörter der Naturlehre, v. 6, abt. 2, taf XXIV. Schwickert, Leipzig.

    Google Scholar 

  • Howarth, R. J., 1984, Statistical applications in geochemical prospecting: a survey of recent developments: Jour. Geochem. Exploration, v. 21, no. 1-3, p. 41–61.

    Google Scholar 

  • Howarth, R. J., in press a, Fitting geomagnetic fields before the invention of least-squares: I. Henry Bond's predictions (1636- 1668) of the change in magnetic declination in London, Ann. Science.

  • Howarth, R. J., in press b, Fitting geomagnetic fields before the invention of least-squares: II.WilliamWhiston's isoclinic maps of southern England (1719 and 1721): Ann. Science.

  • Howarth, R. J., and Koch, G. S., Jr., 1986, Problems of using rock volume data in predictive resource studies: Econ. Geology, v. 81, no. 3, p. 617–626.

    Google Scholar 

  • Howarth, R. J., and McArthur, J. M., 1997, Statistics for strontium isotope stratigraphy: a robust LOWESS fit to the marine Srisotope curve for 0 to 206 Ma, with look-up table for derivation of numeric age: Jour. Geology, v. 105, no. 4, p. 441–456.

    Google Scholar 

  • Huber, P. J., 1964, Robust estimation of a location parameter: Ann. Math. Statistics, v. 35, no. 1, p. 73–101.

    Google Scholar 

  • Huber, P. J., 1973, Robust regression: asymptotics, conjectures and Monte Carlo: Ann. Statistics, v. 1, no. 5, p. 799–821.

    Google Scholar 

  • Humboldt, F. H. A. von, and Biot, J. B., 1804, Sur les variations du magnétisme terrestre, àdifférentes latitudes: Jour. Physique, v. 59, p. 429–450.

    Google Scholar 

  • Imbrie, J., and Kipp, N. G., 1971, A new micropalaeontological method for quantitative paleoclimatology: application to a Late Pleistocene Caribbean core, in Turekian, K., ed., The Late Cenozoic Glacial Ages: Yale Univ. Press, New Haven, Connecticut, p. 71–181.

    Google Scholar 

  • Inman, J. R., 1975, Resistivity inversion with ridge regression: Geophysics, v. 40, no. 5, p. 798–817.

    Google Scholar 

  • Ivory, J., 1825, On the method of least squares: Tilloch's Philosophical Jour. v. 65, p. 3–10, 81-86, 161-168.

    Google Scholar 

  • Jaeckel, L. A., 1972, Estimating regression coefficients by minimizing the dispersion of the residuals: Ann. Math. Statistics, v. 43, p. 1449–1458.

    Google Scholar 

  • James, W. R., 1966, FORTRAN IV program using double Fourier Series for surface fitting of irregularly spaced data: Kansas Geol. Survey, Computer Contrib. 5, 19 p.

  • Jones, H. E., 1937, Some geometrical considerations in the general theory of fitting lines and planes: Metron, v. 13, no. 1, p. 21–30.

    Google Scholar 

  • Jones, T. A., 1972, Multiple regression with correlated independent variables: Math. Geology, v. 4, no. 3, p. 203–218.

    Google Scholar 

  • Jones, T. A., 1979, Fitting straight lines when both variables are subject to error. I. Maximum liklihood and least squares estimation: Math. Geology, v. 11, no. 1, p. 1–25.

    Google Scholar 

  • Jorgenson, D. W., 1961, Multiple regression analysis of a Poisson process: Jour. Am. Stat. Assoc., v. 56, no. 294, p. 235–245.

    Google Scholar 

  • Journel, A. G., and Huijbregts, C. J., 1978, Mining geostatistics: Academic Press, London, 600 p.

    Google Scholar 

  • Jupp, D. L., 1976, B-Splines for smoothing and differentiating data sequences: Math. Geology, v. 8, no. 3, p. 243–266.

    Google Scholar 

  • Jupp, D. L., and Stewart, I. C. F., 1974, A piecewise exponential model for seismic well-logging data: Math. Geology, v. 6, no. 1, p. 33–45.

    Google Scholar 

  • Juran, J. M., 1991,WorldWar II and the quality movement: Quality Progress, v. 24, no. 12, p. 19–24.

    Google Scholar 

  • Jurecková, J., 1971, Nonparametric estimate of regression coeffi-cients: Ann. Math. Statistics, v. 42, no. 4, p. 1328–1338.

    Google Scholar 

  • Kawasaki, T., and Matsui, Y., 1978, Nonlinear least squares technique in element prediction equilibria: Geochemical Jour., v. 12 no. 3, p. 173–181.

    Google Scholar 

  • Kendall, M. G., 1946, The advanced theory of statistics: Griffin, London, v. 2, 521 p.

    Google Scholar 

  • Kent, J. T., Watson, G. S., and Onstott, T. C., 1990, Fitting straight lines and planes with an application to radiometric dating: Earth and Planetary Science Letters, v. 97, no. 1, p. 1–17.

    Google Scholar 

  • Kimeldorf, G. S., and Wahba, G., 1970, A correspondence between Bayesian estimation on stochastic processes and smoothing by splines: Ann. Math. Statistics, v. 41, no. 2, p. 495–502.

    Google Scholar 

  • Knuth, D. E., and Pardo, L. T., 1980, The early development of programming languages, in Metropolis, N., Howlett, J., and G.-C., Rota, eds., A History of Computing in the Twentieth Century: Academic Press, New York, p. 197–273.

    Google Scholar 

  • Koch, G. S., Jr., and Link, R. F., 1967, Geometry of metal distribution in five veins of the Fresnillo Mine, Zacatecas, Mexico: Bur. Mines Rept. Invest. no. 6919, U.S. Depart. Interior, Bur. Mines, Washington, p. 1–64.

    Google Scholar 

  • Koch, G. S., Jr., and Link, R. F., 1970-71, Statistical analysis of geological data: 2 vols. John Wiley & Sons, New York, 375 p., 438 p.

    Google Scholar 

  • Koch, G. S., Jr., Link, R. F., and Schuenemeyer, J. H., 1972, Computer programs for geology: Artronic Information Systems, New York, 142 p.

    Google Scholar 

  • Kohlrausch, F., 1873, An introduction to physical measurements with appendices on absolute electrical measurement, etc.: Waller, T. H., and Procter, H. R., transl., Churchill, London, 249 p.

    Google Scholar 

  • Kottegoda, N. T., and Rosso, R., 1998, Statistics, probability, and reliability for civil and environmental engineers: McGraw-Hill Book Co., New York, 735 p.

    Google Scholar 

  • Krafft, W. L., 1809, Essai sur une loi hypothétique des incolnations de l'aguille aimantée en differents endroits de la terre: Mémoires de l'Académic Impériale des Sciences de St. Pétersbourg, v. l, p. 248–270.

    Google Scholar 

  • Krige, D. G., 1951, A statistical approach to some basic mine valuation problems on the Witwatersrand: Jour. Chem. Metallurgical and Mining Soc. South Africa, v. 52, p. 119–139.

    Google Scholar 

  • Krige, D.G., 1960, On the departure of ore value distributions from the lognormal model in South African Gold Mines: Jour. South African Inst. Mining and Metallurgy, v. 64, no. 4, p. 231–244.

    Google Scholar 

  • Krige, D. G., 1966, Two-dimensional weighted moving average trend surfaces for ore valuation [with discussion]: Jour. South African Inst. Mining and Metallurgy. Spec. Symp. issue, p. 13–79, p. 379-380.

  • Krige, D. G., and Ueckermann, H. J., 1963, Value contours and improved regression techniques for ore reserve valuations: Jour. South African Inst. of Mining and Metallurgy, v. 63, no. 10, p. 429–452.

    Google Scholar 

  • Krumbein, W. C., 1937, Sediments and exponential curves: Jour. Geology, v. 45, no. 6, p. 577–601.

    Google Scholar 

  • Krumbein, W.C., 1952, Principles of faciesmapinterpretation: Jour. Sedimentary Petrology, v. 22, no. 4, p. 200–211.

    Google Scholar 

  • Krumbein, W. C., 1956, Regional and local components in facies maps: Am. Assoc. Petroleum Geologists Bull. v. 40, no. 9, p. 2163–2194.

    Google Scholar 

  • Krumbein, W. C., 1959a, Trend surface analysis of contour-type maps with irregular control-point spacing: Jour. Geophysical Research, v. 64, no. 7, p. 823–834.

    Google Scholar 

  • Krumbein, W. C., 1959b, The sorting out of geological variables illustrated by regression analysis of factors controlling beach firmness: Jour. Sedimentary Petrology, v. 29, no. 4, p. 575–587.

    Google Scholar 

  • Krumbein, W. C., and Pettijohn, F. J., 1938, Manual of sedimentary petrography: Appleton-Century, New York, 549 p.

    Google Scholar 

  • Krumbein, W. C., and Sloss, L. L., 1951, Stratigraphy and sedimentation: W. C. Freeman & Co., San Francisco, 497 p.

    Google Scholar 

  • Krumbein, W. C., and Sloss, L. L., 1958, High-speed digital computers in stratigraphic and facies analysis: Am. Assoc. Petroleum Geologists Bull., v. 42, no. 11, p. 2650–2669.

    Google Scholar 

  • Lalande, J. J. LeF, 1771-81, Astronomie (2nd edn.): 4 vols. Desaint, Paris, 608 p., 803 p., 840 p., 788 p.

    Google Scholar 

  • Lambert, J. H., 1765, Theorie der Zuverlässigkeit der beobachtungen und Versuche, in Beyträge zum Gebrauche der Mathematik und deren Anwendung, v. 1: Verlage des Buchlagens der Realschule, Berlin, p. 424–488.

    Google Scholar 

  • Laplace, P. S. de, 1786,Mémoire sur la figure de la terre:Mémoires de l'Académie royale des Sciences de Paris, v. for 1783, p. 17–46.

    Google Scholar 

  • Laplace, P. S. de, 1788, Théorie de Jupiter et de Saturne:Mémoires de l'Académie royale des Sciences de Paris, v. for 1785, p. 33–160.

    Google Scholar 

  • Laplace, P. S. de, 1793, Sur quelques points du Systéme du monde: Mémoires de l'Académie royale des Sciences de Paris, v. for 1789, p. 477–558.

    Google Scholar 

  • Laplace, P. S. de, 1799, Traité de Méchanique Céleste: v. 2, Crapelet, Paris, 382 p.

    Google Scholar 

  • Laplace, P. S. de, 1819, Application du calcul des probabilités aux opérations géodésiques de la m´eridienne de France: Bulletin des Sciences de la Société Philomathique de Paris, v. for 1819, p. 137–139.

    Google Scholar 

  • Laslett, G. M., 1994, Kriging and splines: An empirical comparison of their predictive performance in some applications [with discussion]: Jour. Am. Stat. Assoc., v. 89, no. 3, p. 391–409.

    Google Scholar 

  • Le Maitre, R. W., 1982, Numerical petrology. Statistical interpretation of geochemical data: Developments in Petrology 8, Elsevier, Amsterdam, 281 p.

    Google Scholar 

  • Legendre, A. M., 1805, Nouvelles méthodes pour la determination des orbites des cométes: Courcier, Paris, 80 p.

    Google Scholar 

  • Legge, J. A., Jr., and Rupnik, J. J., 1943, Least squares determination of the velocity function V D V0 C kz for any set of time depth data: Geophysics, v. 8, no. 4, p. 356–362.

    Google Scholar 

  • Lenth, R. V., 1977, Robust splines: Communications in Statistics, Theory and Methods, v. A6, no. 9, p. 847–854.

    Google Scholar 

  • Lepeltier, C., 1969,Asimplified statistical treatment of geochemical data by graphical representation: Econ. Geology, v. 64, no. 5, p. 538–550.

    Google Scholar 

  • Li, Y., 1985, Recognition of mineralized belts and lithologic patterns in the Silver City-South Mountain region, Idaho, in terms of geochemical reconnaissance data: Math. Geology, v. 17, no. 3, p. 243–265.

    Google Scholar 

  • Lines, L. R., and Treitel, S., 1985, A review of nonlinear regression and its applications to geophysical inverse problems, in Anderson, O.D., Ord, J. K., and Robinson, J. E., eds., Time series analysis: theory and practice 6. Hydrological, geophysical and spatial applications: Elsevier, Amsterdam, p. 133–178.

    Google Scholar 

  • Link, R. F., and Koch, G. S., Jr., 1962, Quantitative areal modal analysis of granitic complexes: discussion: Geol. Soc. America Bull. v. 73, no. 3, p. 411–414.

    Google Scholar 

  • Link, R. F., and Koch, G. S., Jr., 1974, A comparison of three methods of smoothing for ore estimation, in Johnson, T. B., and Gentry, D. W., eds. Proc. 12th Intern. Symp. Applications of Computers and Mathematics in the Minerals Industry, v. 2: Colorado Sch. Mines, Golden, Colorado, p. F95–F107.

    Google Scholar 

  • Link, R. F., Koch, G. S., Jr., and Gladfelter, G.W., 1964, Computer methods of fitting surfaces to assay and other data by regression analysis: Bur. Mines Rept. Invest. no. 6508, U.S. Depart. Interior, Bur. Mines, Washington, 69 p.

    Google Scholar 

  • Link, R. F., Yabe, N. N., and Koch, G. S., Jr., 1966, A computer method of fitting surfaces to assay and other data in three dimensions by quadratic regression analysis: Bur. Mines Rept. Invest. no. 6876,U.S. Depart. Interior, Bur. Mines, Washington, 42 p.

    Google Scholar 

  • Lister, B., 1982, Evaluation of analytical data: a practical guide for geoanalysts: Geostandards Newsletter, v. 6, no. 2, p. 175–205.

    Google Scholar 

  • Lister, B., 1984, A note on robust estimators: Geostandards Newsletter, v. 8, p. 171–172.

    Google Scholar 

  • Lloyd, H., Sabine, E., and Ross, J. C., 1836, Observations on the direction and intensity of the terrestrial magnetic force in Ireland, in Rept. 5th meeting of the British Association for the Advancement of Science, Dublin, 1835: Murray, London, p. 117–162.

    Google Scholar 

  • Longley, J.W., 1967, An appraisal of least squares programs for the electronic computer from the point of view of the user: Jour. Am. Stat. Assoc. v. 62, no. 319, p. 819–841.

    Google Scholar 

  • Ludwig, K. R., 1980, Calculations of uncertainties of U-Pb isotope data: Earth and Planetary Science Letters, v. 46, no. 2, p. 212–220.

    Google Scholar 

  • Ludwig, K. R., 1993, ISOPLOT:Aplotting and regression program for radiogenic isotope data.:U.S. Geol. SurveyOpen-File Rept. 91-445, 41 p.

  • Ludwig, K. R., and Titterington, D. M., 1994, Calculation of 230Th/U isochrons, ages, and errors: Geochim. et Cosmochem. Acta, v. 58, no. 22, p. 5031–5042.

    Google Scholar 

  • Ludwig, K. R., Halley, R. B., Simmons, K. R., and Peterman, Z. E., 1988, Strontium-isotope stratigraphy of Enewetak Atoll: Geology, v. 16, no. 2, p. 173–177.

    Google Scholar 

  • Mahon, K. I., 1996, The New “York” regression: application of an improved statistical method to geochemistry: Intern. Geology Review, v. 38, no. 4, p. 293–303.

    Google Scholar 

  • Maire, C. and Boscovich, R. J., (1755) 1770, Voyage astronomique et geographique, dans l' état de l'eglise, entrepris par l'ordre et sous les auspices du Pape Benoit XIV, Pour mesurer deux dégrés du méridien, et corriger la Carte de l'Etat ecclésiastique, Par les PP. Maire et Boscovich de la Companie de Jesus, Traduit du latin, Augmenté de notes et d'extraits de nouvelles mesures de dégrés faites en Italie, en Allemagne, en Hongrie et en Amérique. Avec une nouvelle Carte des Etats du Pape levée géometriquement: Tillard, Paris, 512 p.

    Google Scholar 

  • Mandelbaum, H., 1963, Statistical and geological implications of trend mapping with nonorthogonal polynomials: Jour. Geophysical Research, v. 68, no. 2, p. 505–519.

    Google Scholar 

  • Mann, C. J., 1987, Misuses of linear regression in the earth sciences, in Size, W. B., ed., Use and Abuse of Statistical Methods in the Earth Sciences, Intern. Assoc. Math. Geology Studies in Mathematical Geology 1: Oxford Univ. Press, Oxford, p. 74–106.

    Google Scholar 

  • Marquardt, D. W., 1963, An algorithm for the estimation of nonlinear parameters: Jour. Soc. Industrial and Applied Mathematics, v. 11, no. 2, p. 431–441.

    Google Scholar 

  • Marquardt, D.W., 1970, Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation: Technometrics, v. 12, no. 4, p. 591–612.

    Google Scholar 

  • Matheron, G., 1962-3, Traité de géostatistique appliquée: 2 vols. Technip, Paris, 334 p., 172 p.

    Google Scholar 

  • Matheron, G., 1963, Principles of geostatistics: Econ. Geology, v. 58, p. 1246–1266.

    Google Scholar 

  • Matheron, G., 1965, Les variables régionalisées et leur estimation: Masson, Paris, 212 p.

    Google Scholar 

  • Matheron, G., 1981, Splines and Kriging: their formal equivalence, in Merriam, D. F., ed., Down-to-Earth Statistics. Solutions Looking for Geological Problems: Syracuse Univ. Geology Contribution 8, p. 77–95.

  • Maupertuis, P. L.M. de, 1740, La figure de la Terre déterminée par MM.de l'Académie R. des Sciences qui ont mesuré le degrédu Meridien au Cercle polaire: Histoire de l'Académie royale des inscriptions et belles lettres, avec les Mémoires de litterature tirées des registres de cette académie, v. for 1738, p. 90–96, p. 389-466.

    Google Scholar 

  • Mayer, T., 1750, Abhandlungüber die Umwalzung des Monds um seine Axe und die scheinbare Bewegung der Mondsflecten: Kosmographische Nachrichten und Sammlungen, v. for 1748, p. 52–183.

    Google Scholar 

  • McArthur, J. M., Howarth, R. J., and Bailey, T. R., 2001, Strontium isotope stratigraphy: LOWESS Version 3. Best-fit to the marine Sr-isotope curve for 0 to 509 Ma and accompanying lookup table for deriving numerical age: Jour. Geology, v. 109, no. 2, p. 155–170.

    Google Scholar 

  • McCammon, R. B., 1969, FORTRAN IV program for nonlinear estimation: Kansas Geol. Survey, Computer Contr. 34, 20 p.

  • McCammon, R. B., 1973, Nonlinear regression for dependent variables: Math. Geology, v. 5, no. 4, p. 365–375.

    Google Scholar 

  • McIntyre, D. B., 1963, Program for computation of trend surfaces and residuals of degree 1 through 8: Tech. Rept. 4, Depart. Geology, Pomona College, Claremont, California, 24 p.

    Google Scholar 

  • McIntyre, G. A., Brooks, C., Compston, W., and Turek, A., 1966, The statistical assessment of Rb-Sr isochrons: Geophys. Research, v. 71, no. 22, p. 5459–5468.

    Google Scholar 

  • McKenzie, D.P., 1987, Edward Crisp Bullard: biographical memoirs of Fellows of the Royal Society, v. 33, p. 67–98.

    Google Scholar 

  • McLaughlin, O. M., McArthur, J. M., Thirlwall, M. F., Howarth, R. J., Burnett, J., Gale, A. S., and Kennedy, W. J., 1995, Sr isotope evolution of Maastrichtian seawater determined from the chalk of Hemmoor, Germany: Terra Nova, v. 7, no. 5, p. 491–499.

    Google Scholar 

  • Meckel, L. D., 1967, Origin of Pottsville conglomerates (Pennsylvanian) in the central Appalachians: Geol. Soc.America Bull., v. 78, no. 2, p. 223–258.

    Google Scholar 

  • Mendoza, C. E., 1986, Smoothing unit vector fields: Math. Geology, v. 18, no. 3, p. 307–322.

    Google Scholar 

  • Merriam, D. F., 1981, Roots of quantitative geology, in Merriam, D. F., ed., Down-to-Earth Statistics. Solutions Looking for Geological Problems: Syracuse Univ. Geology Contr. 8, p. 1–15.

  • Merriam, D. F., and Doria-Medina J. H., 1968, Analisis de tendencias polinomias y de Fourier aplicados a la informacion estratigrafica: Boletin del Inst. Boliviano del Petroleo, v. 8, no. 1, p. 59–74.

    Google Scholar 

  • Merriam, D. F., and Sneath, P. H. A., 1966, Quantitative comparison of contour maps: Jour. Geophysical Research, v. 71, no. 4, p. 1105–1115.

    Google Scholar 

  • Merriman, M., 1877,Alist of writings relating to the method of least squares, with historical and critical notes: Trans. Connecticut Academy of Arts and Sciences, v. 4, no. for 1877-82, pt. 1, p. 151–232.

    Google Scholar 

  • Mickey, M. R., Jr., and Jesperesen, H. W., 1954, Some statistical problems of uranium exploration. Final Tech. Rept: U.S. Atomic Energy Commission, Rept. RME-3105 (Oak Ridge, Tennessee), 78 p.

  • Miesch, A. T., and Connor, J. J., 1967, Stepwise regression in trend analysis: Kansas Geol. Survey, Computer Contr. 12, p. 16–18.

    Google Scholar 

  • Miesch, A. T., and Connor, J. J., 1968, Stepwise regression and nonpolynomial models in trend analysis: Kansas Geol. Survey, Computer Contr. 27, 40 p.

  • Miller, R. L., 1956, Trend surfaces: their application to analysis and description of environments of sedimentation. I. The relation of sediment-size parameters to current-wave systems and physiography: Jour. Geology, v. 64, no. 5, p. 425–446.

    Google Scholar 

  • Miller, R. L., and Kahn, J. S., 1962, Statistical analysis in the geological sciences: John Wiley & Sons, New York, 483 p.

    Google Scholar 

  • Montgomery, D. C., Peck, E. A., and Simpson, J. R., 1998, Multicollinearity and biased estimation in regression, inWadsworth, H. M., Jr. ed., Handbook of Statistical Methods for Engineers and Scientists (2nd edn.): McGraw-Hill Book Co., New York, p. 16.3–16.27.

    Google Scholar 

  • Mosteller, F., 1947, On some useful “inefficient” statistics: Ann. Math. Statistics, v. 17, no. 4, p. 377–408.

    Google Scholar 

  • Müller, H.-G., 1987,Weighted local regression and kernel methods for nonparametric curve fitting: Jour. Am. Stat. Assoc. v. 82, no. 2, p. 231–238.

    Google Scholar 

  • Murtagh, F., 1990, Linear regression with errors in both variables: a short review, in Jascheck, C., and Murtagh, F., eds., Errors, bias and uncertainties in astronomy: Cambridge Univ. Press, Cambridge, p. 385–391.

    Google Scholar 

  • Murthy, V. R., and Compston, W., 1965, Rb-Sr ages of chondrules and carbonaceous chondrites: Jour. Geophysical Research, v. 70, no. 20, p. 5297–5307.

    Google Scholar 

  • Nackowski, M. P., Mardirosian, C. A., and Botbol, J. M., 1967, Trend surface analysis of trace chemical data, Park City District, Utah: Econ. Geology, v. 62, no. 8, p. 1072–1087.

    Google Scholar 

  • Newton, I., 1726 (1934), Book III. System of theWorld (in mathematical treatment), in Motte, A. transl., Cajori, F., ed., Sir Isaac Newton's Mathematical Principles of Natural Philosophy and his System of theWorld, v. II: reprinted Univ. California Press, Berkeley, Los Angeles, p. 397–680.

  • Nichol, I., and Webb, J. S., 1967, The application of computerized mathematical and statistical procedures to the interpretation of geochemical data [with discussion]: Proc. Geol. Society, London, no. 1642, p. 186–199.

    Google Scholar 

  • Nichol, I., Garrett, R. G., and Webb, J. S., 1969, The role of some statistical and mathematical methods in the interpretation of regional geochemical data: Econ. Geology, v. 64, no. 2, p. 204–220.

    Google Scholar 

  • Norcliffe, G. B., 1969, On the use and limitations of trend surface analysis: Can. Geographer, v. 13, no. 4, p. 338–348.

    Google Scholar 

  • O'Leary, M., Lippert, R. H., and Spitz, O. T., 1966, FORTRAN IV and MAP program for computation and plotting of trend surfaces for degrees 1 through 6: Kansas Geol. Survey, Computer Contr. 3, 47 p.

  • O'Neill, M., Sinclair, I. G., and Smith, F. J., 1969, Polynomial curve fitting when abscissas and ordinates are both subject to error: Computer Jour., v. 12, no. 1, p. 53–57.

    Google Scholar 

  • Oldham, C. H.G., and Sutherland, D. B., 1955, Orthogonal polynomials: their use in estimating the regional effect: Geophysics, v. 20, no. 2, p. 295–306.

    Google Scholar 

  • Olea, R. A., 1972, Application of regionalized variable theory to automatic contouring: Spec. Rept.Am.Petroleum Inst. Research Project no. 131, Univ. Kansas Center for Research Inc. and Kansas Geol. Survey, Lawrence, Kansas, 191 p.

    Google Scholar 

  • Olmstead, P. S., 1967, Special Memorial Issue: Industrial Quality Control, v. 24, no. 2, p. 72–122.

    Google Scholar 

  • Omori, F., 1894, On after-shocks: Seismological Jour. Japan, v. 3, p. 71–80.

    Google Scholar 

  • Ondrick, C. W., and Griffiths, J. C., 1969, Trend surface analysis applied to the Rensselaer graywacke and its implications to the Taconics: Jour. Sedimentary Petrology, v. 39, no. 1, p. 176–186.

    Google Scholar 

  • Pan, G., and Harris, P. D., 1991, Geology-exploration endowment models for simultaneous estimation of discoverable mineral resources and endowment: Math. Geology, v. 23, no. 4, p. 507–540.

    Google Scholar 

  • Pearson, K., 1893, Assymetrical frequency curves: Nature, v. 48, no. 1252, p. 615–616.

    Google Scholar 

  • Pearson, K., 1894, Contribution to the mathematical theory of evolution: Philosophical Trans. Royal Society, London, v. A185, no. for 1893, p. 71–110.

    Google Scholar 

  • Pearson, K., 1896, Contributions to the mathematical theory of evolution. II. Skew variation in homogenious material: Royal Society, London, Philosophical Trans., v. A186, no. for 1895, p. 343–414.

    Google Scholar 

  • Pearson, K., 1901, On lines and planes of closest fit to systems of points in space: Philosophical Magazine, Ser. 6, v. 2, no. 11, p. 559–572.

    Google Scholar 

  • Pearson, K., 1920, Notes of the history of correlation: Biometrika, v. 13, p. 25–45.

    Google Scholar 

  • Pell, J., 1673-76, Collections relating to commissions to enquire into the methods for finding the longitude: British Library Add. ms. 4393, London, ff. 26–106.

    Google Scholar 

  • Pelletier, B. C., 1958, Pocono paleocurrents in Pennsylvania and Maryland: Geol. Soc. America Bull., v. 69, no. 8, p. 1033–1064.

    Google Scholar 

  • Perry, K., Jr., 1967, Methods of petrologic calculation and the relationship between mineral and bulk chemical composition: Univ. Wyoming Contr. to Geology, v. 6, no. 1, p. 5–38.

    Google Scholar 

  • Perry, K., Jr., 1968, A computer program for representation of mineral chemical analyses in terms of end members: Univ. Wyoming Contr. to Geology, v. 7, no. 1, p. 7–14.

    Google Scholar 

  • Potter, P. E., 1955,The petrology and origin of the Lafayette Gravel: Part I, mineralogy and petrology: Jour. Geology, v. 63, no. 1, p. 1–38.

    Google Scholar 

  • Priestley, M. B., and Chao, M. T., 1972, Nonparametric function fitting: Jour. Royal Stat. Society, v. B34, no. 3, p. 384–392.

    Google Scholar 

  • Puissant, L., 1819, Traité de géodésie, ou exposition des méthodes trigonométriques et astronomiques, applicables àla construction du canevas des cartes topographiques: 2 vols. Courcier, Paris, 426 p., 386 p.

    Google Scholar 

  • Puissant, L., 1842, Trait éde géodésie, ou exposition des méthodes trigonométriques et astronomiques, applicables àla construction du canevas des cartes topographiques (2nd edn.) 2 vols. Courcier, Paris, 515 p., 496 p.

    Google Scholar 

  • Quetelet, A., 1841, Second Mémoire sur le Magnétisme Terrestre en Italie: Nouveaux Mémoires de l'Academie royale des Sciences et des Belles-Lettres de Bruxelles, v. 13, p. 1–27.

    Google Scholar 

  • Ralston, M. L., and Jennrich, R., 1978, Derivative-free nonlinear regression, in Hogben, D., ed., Proc. Computer-Science and Statistics.Tenth Ann. Symp. Interface:U.S. Government Printing Office, Washington, D.C., p. 312–322.

    Google Scholar 

  • Rao, C. R., 1948, The utilization of multiple measurements in problems of biological classification: Jour. Royal Stat. Society, v. B10, no. 2, p. 159–203.

    Google Scholar 

  • Ray, R. D., 1985, Correlation of systematic error in magnetic surveys, an application of ridge regression and sparse matrix theory: Geophysics, v. 50, no. 11, p. 1721–1731.

    Google Scholar 

  • Read, L. J., and Berkson, J., 1929, The application of the logistic function to experimental data: Jour. Physical Chemistry, v. 33, p. 760–779.

    Google Scholar 

  • Read, W. A., and Merriam, D. F., 1966, Trend surface analysis of stratigraphic thickness data from some Namurian rocks east of Stirling, Scotland: Scottish Jour. Geology, v. 2, no. 1, p. 96–100.

    Google Scholar 

  • Renner, R. M., 1991, An examination of the use of the logratio transformation for the testing of endmember hypotheses: Math. Geology, v. 23, no. 4, p. 549–563.

    Google Scholar 

  • Renner, R. M., 1993, A constrained least-squares subroutine for adjusting negative estimated element concentrations to zero: Computers & Geosciences, v. 19, no. 9, p. 1351–1360.

    Google Scholar 

  • Renner, R. M., Glasby, G. P., and Szefer, P., 1998, Endmember analysis of heavy-metal pollution in surficial sediments from the Gulf of Gdansk and the southern Baltic Sea off Poland: Applied Geochemistry, v. 13, no. 3, p. 313–318.

    Google Scholar 

  • Renner, R. M., Glasby, G. P., and Walter, P., 1997, Endmember analysis of metalliferous sediments from the Galapagos Rift and East Pacific Rise between 2º N. and 42º S: Applied Geochemistry, v. 12, no. 3, p. 383–395.

    Google Scholar 

  • Richardson, W. A., 1923, The frequency-distribution of igneous rocks. Part II. The laws of distribution in relation to petrogenetic theories: Mineral. Magazine, v. 20, no. 100, p. 1–19.

    Google Scholar 

  • Ripley, B.D., 1981, Spatial statistics: JohnWiley & Sons, NewYork, 252 p.

    Google Scholar 

  • Ripley, B. D., and Thompson, M., 1987, Regression techniques for the detection of analytical bias: The Analyst, London, v. 112, p. 377–383.

    Google Scholar 

  • Ritter, K., 1969, Generalized spline interpolation and non-linear Programming, in Schoenberg, I. J., ed., Approximation with Special Emphasis on Spline Functions: Academic Press, New York, p. 75–118.

    Google Scholar 

  • Riu, J., and Rius, F. X., 1995, Univariate regression models with errors in both axes: Jour. Chemometrics, v. 9, p. 343–362.

    Google Scholar 

  • Rock, N. M. S., and Duffy, T. R., 1986, REGRES:AFORTRAN-77 program to calculate nonparametric and “structural” parametric solutions to bivariate regression equations: Computers & Geosciences, v. 12, no. 6, p. 807–818.

    Google Scholar 

  • Roeder, K., 1994, A graphical technique for determining the number of components in a mixture of normals: Jour. Am. Stat. Assoc., v. 89, no. 2, p. 487–495.

    Google Scholar 

  • Rollinson, H. R., 1993, Using geochemical data: evaluation, presentation, interpretation: Longman, Harlow, 352 p.

    Google Scholar 

  • Roman, I., 1933, Least squares in practical geophysics, in Geophysical Prospecting 1932: Am. Inst. of Mining Engineers, New York, p. 460–506.

  • Rose, A. W., Dahlberg, E. C., and Keith, M. L., 1970, A multiple regression technique for adjusting background values in stream-sediment geochemistry: Econ. Geology, v. 65, no. 2, p. 156–165.

    Google Scholar 

  • Rousseeuw, P. J., 1983, Regression techniques with a high breakdown point: Inst. Mathematics and Statistics Bull., v. 12, p. 155.

    Google Scholar 

  • Rousseeuw, P. J., 1984, Least median of squares regression: Jour. Am. Stat. Assoc., v. 79, no. 388, p. 871–880.

    Google Scholar 

  • Ryan, T. A., Jr., 1975, Robust regression-bounded leverage: Proc. Stat. Computing Section (Alexandria, Virginia), Am. Stat. Assoc., p. 138–141.

  • Sabine, E., 1837, Observations on the direction and intensity of the terrestrial magnetic force in Scotland, in Rept. 6th Meeting of the British Association for the Advancement of Science, (Bristol, 1836): Murray, London, p. 97–119.

    Google Scholar 

  • Sabine, E., 1839a, Report on the variations of the magnetic intensity observed at different points of the Earth's surface, in Rept. 8th meeting of the British Association for the Advancement of Science (Newcastle-on-Tyne, 1838): Murray, London, p. 1–85, p. 497-500.

    Google Scholar 

  • Sabine, E., 1839b, A memoir on the magnetic isoclinal and isodynamic lines in the British Islands, from observations by Professors Humphry Lloyd and John Phillips, RobertWere Fox, Esq., Captain James Clark Ross, R. N., and Major Edward Sabine, R. A., in Rept. 8th meeting of the British Association for the Advancement of Science. (Newcastle-on-Tyne, 1838): Murray, London, p. 49–196, 318-320.

    Google Scholar 

  • Santos Oliveira, J. M., 1979, Trend-surface analysis in geochemical propsecting data, Arouca-Castro Daire region, northern Portugal: Chem. Geology, v. 24, no. 3-4, p. 271–291.

    Google Scholar 

  • Schlee, J., 1957, Upland gravels of southern Maryland: Geol. Soc. America Bull., v. 68, no. 10, p. 1371–1410.

    Google Scholar 

  • Schmid, K., 1934, Biometrische Untersuchungen an Foraminiferen aus dem Phacen von Ceram: Eclogae Geologicae Helvetiae, v. 27, no. 1, p. 46–128.

    Google Scholar 

  • Schoenberg, I. J., 1946, Contributions to the problem of approximation of equidistant data by analytic functions: Quart. Applied Mathematics, v. 4, no. 1, p. 45–99, 112-141.

    Google Scholar 

  • Shewhart, W. A., 1933, Economic control of manufactured product: Van Nostrand, New York, 356 p.

    Google Scholar 

  • Sheynin, O. B., 1993, On the history of the principle of least squares: Archive for History of Exact Sciences, v. 46, p. 39–54.

    Google Scholar 

  • Simpson, S. M., Jr., 1954, Least squares polynomial fitting to gravitational data and density plotting by digital computers: Geophysics, v. 19, no. 2-3, p. 255–269, 644.

    Google Scholar 

  • Sinclair, A. J., and Woodsworth, G. J., 1970, Multiple regression as a method of estimating exploration potential in an area near Terreace, B.C.: Econ. Geology, v. 65, no. 8, p. 998–1003.

    Google Scholar 

  • Smalley, P. C., Higgins, A. C., Howarth, R. J., Nicholson, H., Jones, C. E., Swinburne, N. H. M., and Bessa, J., 1994, Marine Strontium isotopes: a Phanerozoic seawater curve for practical sediment dating and correlation: Geology, v. 22, no. 5, p. 431–434.

    Google Scholar 

  • Smith, J. R., 1986, From plane to spheroid. Determining the Figure of the Earth from 3000 B.C. to the 18th Century Lapland and Peruvian Survey Expeditions: Landmark Enterprises, Rancho Cordova, California, 219 p.

    Google Scholar 

  • Smith, J. V., Stevenson, D. A., Howie, R. A., and Hey, M. H., 1969, Relations between cell dimensions, chemical composition, and site preference of orthopyroxene: Mineral. Magazine, v. 37, no. 285, p. 90–114.

    Google Scholar 

  • Snee, R.D., 1983, Discussion:Technometrics, v. 26, no. 3, p. 230–237.

    Google Scholar 

  • Sobel, D., 1996, Longitude: Fourth Estate, London, 184 p.

    Google Scholar 

  • Somerville, M., 1831, Mechanisms of the Heavens: Murray, London, 1xx C 621 p.

    Google Scholar 

  • Stigler, S. M., 1973, Simon Newcomb, Percy Daniell, and the history of robust estimation 1885-1920: Jour. Am. Stat. Assoc., v. 86, no. 4, p. 872–879.

    Google Scholar 

  • Stigler, S. M., 1986, The history of statistics. The measurement of uncertainty before 1900: Belknap Press, Cambridge, Massachusetts, 410 p.

    Google Scholar 

  • Sytarno, D., and Vozoff, K., 1989, Robust M-estimation of magnetotelluric impedance tensors: Exploration Geophysics, v. 20, no. 3, p. 383–398.

    Google Scholar 

  • Tanner, W. F., Evans, R. G., and Holmes, C. W., 1963, Low-energy coast near Romano, Florida: Jour. Sedimentary Petrology, v. 33, no. 3, p. 713–722.

    Google Scholar 

  • Tap, J., and Bond, H., 1648, The Sea-Mans Kalendar or, An Ephemerides of the Sunne, moone, and certaine of the most notable fixed Starres.As also aTable of the Longitude and Latitude, of all the most eminent Places of theWorld, very exactly calculated by John Tap. The Twentieth Impression, newly Corrected and Inlarged with many additions ::: Also a Discovery of finding the long hidden Secret of longitude by Henry Bond, Teacher of the Mathematickes at the Bulwark-gate neere the Tower: Hurlock, London, 180 p.

    Google Scholar 

  • Taylor, E. G. R., 1954, The mathematical practitioners of Tudor and Stuart England: Cambridge Univ. Press for The Institute of Navigation, Cambridge, 443 p.

    Google Scholar 

  • Tilling, L., 1975, Early experimental graphs: British Jour. History of Science, v. 8, no. 30, p. 193–213.

    Google Scholar 

  • Tinkler, K. J., 1969, Trend surfaces with low “explanations;” the assessment of their significance:Am.Jour. Science, v. 267, no. 1, p. 114–123.

    Google Scholar 

  • Titterington, D. M., and Halliday, A. N., 1979, On the fitting of parallel isochrons and the method of maximum likelihood: Chem. Geology, v. 26, no. 3-4, p. 183–195.

    Google Scholar 

  • Titterington, D. M., Smith, A. F. M., and Makov, U. E., 1986, Statistical analysis of finite mixture distributions: John Wiley & Sons, Chichester, 237 p.

    Google Scholar 

  • Todhunter, I., 1873, A history of the mathematical theories of attraction and the Figure of the Earth: 2 vols. Macmillan, London, 476 p., 508 p.; reprinted, Dover, New York (1962).

    Google Scholar 

  • Troutman, B. M., and Williams, G. P., 1987, Fitting straight lines in the earth sciences, in Size, W. B., ed., Use and Abuse of Statistical Methods in the earth Sciences: Intern. Assoc. Math. Geology Studies in Mathematical Geology, 1: Oxford Univ. Press, Oxford, p. 107–128.

    Google Scholar 

  • Tukey, J. W., 1960, A survey of sampling from contaminated distributions, in Olkin, I., ed., Contributions to Probability and Statistics: Stanford Univ. Press, Stanford, California, p. 445–485.

    Google Scholar 

  • Tukey, J.W., 1972, Discussion of “Mathematical Problems in Geology” by F. P. Ageterberg and S. C. Robinson: Intern. Stat. Inst. Bull., v. 44, Proc. of 38th Sess. 1971, Book 1, p. 596.

    Google Scholar 

  • Tukey, J. W., (1970) 1977, Exploratory data analysis: Addison-Wesley, Reading, Massachusetts, 506 p.; early version of text privately circulated in 1970.

    Google Scholar 

  • Unwin, D. J., 1970, Percentage reduction in sums of squares in trend surface analysis: Area, v. 2, no. 1, p. 25–28.

    Google Scholar 

  • Van Orstrand, C. E., 1926, Some evidence on the variation of temperature with geologic structure in California and Wyoming oil districts: Econ. Geology, v. 21, no. 2, p. 145–165.

    Google Scholar 

  • Velleman, P. F., and Hoaglin, D. C., 1981, Applications, basics, and computing of exploratory data analysis: Duxbury Press, Boston, Massachusetts, 354 p.

    Google Scholar 

  • Vincent, P., 1986, Differentiation of modern beach and coastal dune sands; a logistic regression approach using the parameters of the hyperbolic function: Sedimentary Geology, v. 49, no. 3-4, p. 167–176.

    Google Scholar 

  • Vinod, H. D., and Ullah, A., 1981, Recent advances in regression methods: Dekker, New York, 361 p.

    Google Scholar 

  • Vistelius, A. B., 1967, Mathematical techniques in making geological interpretation: Proc. Panel Discussion 5, 7th World Petroleum Congress (Mexico City), p. 13–24.

  • Vistelius, A. B., and Romanova, M. A., 1964, Distribution of the heavy fraction in sands from deposits of the central Kara Kum [in Russian]: Doklady Akademii Nauk SSSR, v. 158, no. 4, p. 860–864.

    Google Scholar 

  • Waddington, C. H., 1929, Notes on graphical methods of recording the dimensions of ammonites: Geol. Magazine, v. 66, no. 778, p. 180–186.

    Google Scholar 

  • Wahba, G., 1975, Smoothing noisy data by spline functions: Numerische Mathematik, v. 24, p. 383–393.

    Google Scholar 

  • Wald, A., 1940, The fitting of straight lines if both variables are subject to error: Ann. Math. Statistics, v. 11, no. 3, p. 284–300.

    Google Scholar 

  • Welch, A. H., Lico, M. S., and Hughes, J. L., 1988, Arsenic in ground water of the western United States: GroundWater, v. 26, no. 3, p. 333–338.

    Google Scholar 

  • Wells, M. B., 1980, Reflections on the evolution of algorithmic language, in Metropolis, N., Howlett, J., and Rota, G.-C., eds., A history of Computing in the Twentieth Century: Academic Press, New York, p. 275–287.

    Google Scholar 

  • Whiston, W., 1719, The longitude and latitude found by the inclinatory or dipping needle: Printed for author, London, 32 p.

  • Whiston, W., 1721, The longitude and latitude found by the inclinatory or dipping needle; Wherein the laws of magnetism are also discover'd. To which is prefix'd, an historical preface; and to which is subjoin'd, Mr. Robert Norman's new attractive, or account of the first invention of the dipping needle: Senex and Taylor, London, xviii p. C115 p.

    Google Scholar 

  • Whitten, E. H. T., 1959, Composition trends in a granite: modal variation and ghost stratigraphy in part of the Donegal granite, Eire: Jour. Geophys. Research, v. 64, no. 7, p. 835–848.

    Google Scholar 

  • Whitten, E. H. T., 1961, Quantitative areal modal analysis of granitic complexes: Geol. Soc. America Bull., v. 72, no. 9, p. 1331–1360.

    Google Scholar 

  • Whitten, E. H. T., 1963, A surface-fitting program suitable for testing geological models which involve areally-distributed data: Tech. Rept. no. 2 of ONR Task no. 389-135, Geography Branch, Office of Naval Research. Northwestern Univ., Evanston, Illinois, 56 p.

  • Whitten, E. H. T., 1964, “Best” mathematical model for mapped variables: Gold variability at Virginia Mine, South Africa (abst.), in Program with Abstracts, Miami Meeting, Geol. Soc. America, p. 223.

  • Whitten, E. H. T., 1966, The general linear equation in prediction of gold content in Witwatersrand rock, South Africa: South African Inst. Mining and Metallurgy, v. 66, no. 3, p. 124–165.

    Google Scholar 

  • Whitten, E. H. T., 1974, Orthogonal-polynomial contoured trendsurface maps for irregularly-spaced data: Tech. Rept. 2. U.S. Army Research office-Durham grant DA-ARO-D-31-124-72-G54. Northwestern Univ., Evanston, Illinois, p. 1–24.

    Google Scholar 

  • Whitten, E. H. T., and Boyer, R. E., 1964, Process-response models based on heavy-mineral content of the San Isabel Granite, Colorado: Geolo. Soc. America Bull., v. 75, no. 9, p. 841–862.

    Google Scholar 

  • Will, T. M., and Powell, R., 1991, A robust approach to the calculation of paleostress fields from fault plane data: Jour. Structural Geology, v. 13, no. 7, p. 813–821.

    Google Scholar 

  • Williamson, J. H., 1968, Least-squares fitting of a straight line: Can. Jour. Physics, v. 44, p. 1097–1086.

    Google Scholar 

  • Winchell, H., and Tilling, R., 1960, Regressions of physical properties on the composition of clinopyroxenes. I. Lattice constants: Am. Jour. Science, v. 258, no. 8, p. 529–547.

    Google Scholar 

  • Wold, H. O. A., 1938, A study in the analysis of stationary time series: Alnquist and Winsell, Uppsala, 214 p.

    Google Scholar 

  • Wold, H.O. A., 1949,Alarge sample test of moving averages: Jour. Royal Stat. Society, v. B11, p. 297–305.

    Google Scholar 

  • Wold, S., 1974, Spline functions in data analysis: Technometrics, v. 16, no. 1, p. 1–11.

    Google Scholar 

  • Woolf, B., 1951, Computation and interpetation of multiple regressions: Jour. Royal Stat. Society, v. B13, no. 1, p. 100–119.

    Google Scholar 

  • York, D., 1966, Least-squares fitting of a straight line: Can. Jour. Physics, v. 44, p. 1079–1086.

    Google Scholar 

  • York, D., 1967, The best isochron: Earth and Planetary Science Letters, v. 2, no. 5, p. 479–482.

    Google Scholar 

  • York, D., 1969, Least-squares fitting of a straight line with correlated errors: Earth and Planetrary Science Letters, v. 5, no. 5, p. 320–324.

    Google Scholar 

  • Yule, G. U., 1897, On the theory of correlation: Jour. Royal Stat. Society, v. 60, p. 812–854.

    Google Scholar 

  • Zhou, D., 1987, Robust statistics and geochemical data analysis: Math. Geology, v. 19, no. 3, p. 207–218.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howarth, R.J. A History of Regression and Related Model-Fitting in the Earth Sciences (1636?-2000). Natural Resources Research 10, 241–286 (2001). https://doi.org/10.1023/A:1013928826796

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013928826796

Navigation