Skip to main content
Log in

Spectral Properties of High-Tc Cuprates via a Cluster-Perturbation Approach

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Angular-resolved photoemission data on half-filled doped cuprate materials are compared with an exact-diagonalization analysis of the three-band Hubbard model, which is extended to the infinite lattice by means of a perturbation in the intercluster hopping (cluster perturbation theory). A study of the band dispersion and spectral weight of the insulating cuprate Sr 2 CuO 2 Cl 2 allows us to fix a consistent parameter set, which turns out to be appropriate at finite dopings as well. In the overdoped regime, our results for the spectral weight and for the Fermi surface give a good description of the experimental data on Bi 2 Sr 2 CaCu 2 O 8. In particular, the Fermi surface is hole-like and centered around k=(π, π) . Finally, we introduce a hopping between two layers and address the issue of bilayer splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. Dürr et al., Phys. Rev. B 63, 014505 (2001).

    Google Scholar 

  2. S. LaRosa et al., Phys. Rev. B 56, R525 (1997).

    Google Scholar 

  3. B. O. Wells et al., Phys. Rev. Lett. 74, 964 (1995).

    Google Scholar 

  4. F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 (1988).

    Google Scholar 

  5. R. Preuss, W. Hanke, and W. von der Linden, Phys. Rev. Lett. 75, 1344 (1995).

    Google Scholar 

  6. R. Eder, Y. Ohta, and G. A. Sawatzky, Phys. Rev. B 55, R3414 (1997).

    Google Scholar 

  7. G. Dopf, A. Muramatsu, and W. Hanke, Phys. Rev. B 41, 9264 (1990).

    Google Scholar 

  8. G. Dopf et al., Phys. Rev. Lett. 68, 353 (1992).

    Google Scholar 

  9. G. Dopf et al., Phys. Rev. Lett. 68, 2082 (1992).

    Google Scholar 

  10. D. Senechal, D. Perez, and M. Pioro-Ladriere, Phys. Rev. Lett. 84, 522 (2000).

    Google Scholar 

  11. M. G. Zacher et al., Phys. Rev. Lett. 85, 2585 (2000).

    Google Scholar 

  12. M. G. Zacher et al., cond-mat/0103030.

  13. P. Fulde, Electron Correlations in Molecules and Solids (Springer, Berlin, 1995).

    Google Scholar 

  14. H. Fretwell et al., Phys. Rev. Lett. 84, 4449 (2000).

    Google Scholar 

  15. A. D. Gromko et al., cond-mat/0003017 (2000).

  16. D. L. Feng et al., Phys. Rev. Lett. 86, 5550 (2001).

    Google Scholar 

  17. J. Mesot et al., Phys. Rev. B 63, 224516 (2001).

    Google Scholar 

  18. M. S. Golden et al., Physica C 341–348, 2099 (2000).

    Google Scholar 

  19. P. V. Bogdanov et al., cond-mat/0005394 (2000).

  20. D. S. Marshall et al., Phys. Rev. Lett. 76, 4841 (1996).

    Google Scholar 

  21. W. Brenig, Phys. Rep. 251, 153 (1995).

    Google Scholar 

  22. Z.-X. Shen, and D. S. Dessau, Phys. Rep. 253, 1 (1995).

    Google Scholar 

  23. V. J. Emery, Phys. Rev. Lett. 58, 2794 (1987); V. J. Emery and G. Reiter Phys. Rev. B 38, 4547 (1988).

    Google Scholar 

  24. E. Arrigoni, Phys. Rev. Lett. 80, 790 (1998).

    Google Scholar 

  25. D. Boies, C. Bourbonnais, and A.-M. S. Tremblay, Phys. Rev. Lett. 74, 968 (1995).

    Google Scholar 

  26. E. Arrigoni, Phys. Rev. Lett. 83, 128 (1999).

    Google Scholar 

  27. S. Uchida et al., Phys. Rev. B 43, 7942 (1991).

    Google Scholar 

  28. S. L. Cooper et al., Phys. Rev. B 47, 8233 (1993).

    Google Scholar 

  29. M. S. Hybertsen et al., Phys. Rev. B 41, 11068 (1990).

    Google Scholar 

  30. T. Tohyama and S. Maekawa, Supercond. Sci. Technol. 13, R17 (2000).

    Google Scholar 

  31. J. M. Eroles, C. D. Batista, and A. A. Aligia, cond-mat/9812325 (1998).

  32. F. Lema and A. A. Aligia Physica C 307, 307 (1998).

    Google Scholar 

  33. A. Damascelli, D. H. Lu, and Z. X. Shen, J. Electron Spectr. Relat. Phenom. 117–118, 165 (2001).

    Google Scholar 

  34. O. K. Andersen et al., J. Phys. Chem. Solids 56, 1573 (1995).

    Google Scholar 

  35. A. A. Kordyuk et al., cond-mat/0104294 (2001).

  36. S. Legner et al., Phys. Rev. B 62, 154 (2000).

    Google Scholar 

  37. Y. D. Chuang et al., Phys. Rev. Lett. 83, 3717 (1999).

    Google Scholar 

  38. A. Bansil and M. Lindroos, Phys. Rev. Lett. 83, 5154 (1999).

    Google Scholar 

  39. C. Dahnken and R. Eder, cond-mat/0109036.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahnken, C., Arrigoni, E. & Hanke, W. Spectral Properties of High-Tc Cuprates via a Cluster-Perturbation Approach. Journal of Low Temperature Physics 126, 949–959 (2002). https://doi.org/10.1023/A:1013898709475

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013898709475

Keywords

Navigation