Skip to main content
Log in

Some Properties of Solutions of Double Stochastic Differential Equations

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

The paper deals with double stochastic differential equations. Existence and uniqueness are obtained under a Hölder-type hypothesis. The convergence in probability of the successive approximations in the Hölder norm and the existence of a weak solution for continuous coefficients are also proved. Under an additional independence hypothesis, the mean square convergence of fractional step approximations is shown. This last result is used in order to deduce a comparison result and as a consequence the existence of a strong solution in the case when the ”double ”noise is additive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bahlali, K., Mezerdi, B., and Ouknine, Y. (1998). Pathwise uniqueness and approximation of solutions of stochastic differential equations. Sém. Prob. XXXII. Lecture Notes in Math., Vol. 1686, pp. 166-187, Springer-Verlag.

  2. Belopolskaia, Ya. I., and Nagolkina, Z. I. (1982). On a class of stochastic equations with partial derivatives. Teor. Veroyatnost. Primen., 551-559.

  3. Belly, S., and Decreusefond, L. (1997). Multi-dimensional fractional Brownian motion and some applications to queueing theory. In Tricot, C., and Levy, J. (eds.), Fractals in Engineering.

  4. Bensoussan, A., Glowinski, R., and Rascanu, A. (1992). Approximation of some stochastic differential equations by the splitting up method. Applied Math. and Optim. 25, 81-106.

    Google Scholar 

  5. Berger, M., and Mizel, V. (1980). Volterra equations with Itô integrals-I. J. Integral Equations 2, 187-245.

    Google Scholar 

  6. Berger, M., and Mizel, V. (1980). Volterra equations with Itô integrals-II, J. Integral Equations 2, 319-337.

    Google Scholar 

  7. Coutin, L., and Decreusefond, L. (2000). Stochastic differential equations driven by a fractional Brownian motion. Preprint.

  8. Decreusefond, L., and Ñstunel (1999). Stochastic analysis for the fractional Brownian motion. Potential Analysis 10(2), 177-214.

    Google Scholar 

  9. Ferreyra, G., and Sundar, P. (2000). Comparison of solutions of stochastic Volterra equations. Bernoulli 6(6), 1001-1007.

    Google Scholar 

  10. Ferreyra, G., and Sundar, P. (2000). Comparison of solutions of stochastic equations and applications. Stochastic Anal. Appl. 18(2), 211-229. Preprint (to appear).

    Google Scholar 

  11. Goncharuk, Yu. N., and Kotelenez, P. (1998). Fractional step method for stochastic evolution equations. Stochastics and Stochastics Reports 73, 1-45.

    Google Scholar 

  12. Ikeda, N., and Watanabe, S. (1981). Stochastic Differential Equations and Diffusion Processes, North-Holland, Amsterdam (Kodansha Ltd., Tokyo).

    Google Scholar 

  13. Kallianpur, G., and Xiong, J. (1995). Stochastic Differential Equations in Infinite Dimensional Spaces. IMS Lecture Notes-Monograph Series, Vol. 26.

  14. Kolodii, A.M. (1983), On the existence of solutions of stochastic Volterra integral equations. Teor. Sluchajnykh Protsessov 11, 51-57 (in Russian).

    Google Scholar 

  15. Melnikov, A. V. (1983). Stochastic equations and Krylov's estimates for semimartingales. Stochastics 10, 81-102.

    Google Scholar 

  16. Meyer, P. A. (1976). Notions sur les intégrales multiples. Sém. Probab. X. Lecture Notes in Math., Vol. 511, Springer-Verlag, pp. 321-331.

  17. Nualart, D. (1995). The Malliavin Calculus and Related Topics, Springer-Verlag.

  18. Nualart, D., and Rovira, C. (2000). Large deviations for stochastic Volterra equations. Bernoulli 6(2), 339-3555.

    Google Scholar 

  19. Oksendal, B., and Zhang, T. S. (1993), The stochastic Volterra equation. In Nualart, D., and Sanz-Solé, M. (eds.), The Barcelona Seminar on Stocastic Analysis, Birkhäuser.

  20. Protter, P. (1985). Volterra equations driven by semimartingales. Ann. Probab. 12(3), 519-530.

    Google Scholar 

  21. Rascanu, A., and Tudor, C. (1995). Approximation of stochastic equations by the splitting up method. In Corduneanu, C. (ed.), Qualitative Problems for Differential Equations and Control Theory, Word Scientific Publishing, pp. 277-287.

  22. Ruiz de Chavez, J. (1985). Sur les intégrales stochastiques multiples. In Sém. Probab. XIX, Lecture Notes in Math., Vol. 1123, Springer-Verlag, pp. 248-257.

  23. Skorohod, A. V. (1965). Studies in the Theory of Random Processes, Addison Wesley.

  24. Tudor, C. (1989). A comparison theorem for stochastic equations with Volterra drifts. Ann Probab. 17(4), 1541-1545.

    Google Scholar 

  25. Tudor, C., and Tudor, M. (1997). Approximate solutions for multiple stochastic equations with respect to semimartingales. Zeitschrift für Analysis und ihre Anwendungen 16(3), 761-768.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Tudor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tudor, C., Tudor, M. Some Properties of Solutions of Double Stochastic Differential Equations. Journal of Theoretical Probability 15, 129–151 (2002). https://doi.org/10.1023/A:1013893301839

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013893301839

Navigation