Skip to main content
Log in

Universal Parameters in the Response of Unconventional Superconductors

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

This paper is devoted to a unified description of a large class of clean unconventional superconductors within a generalized weak coupling BCS model,applicable to the superfluid phases of liquid 3He, heavy Fermion and cuprate superconductors as well as the Ruddlesden–Popper system Sr 2 RuO 4 . Gap nodes, leading to low energy (nodal) Bogoliubov quasiparticles do not only modify the two universal so-called Mühlschlegel-BCS parameters, namely the specific heat discontinuity ΔC/C N at the transition and the gap maximum Δ 0 (0)/k B T c at zero temperature. They give rise also to the existence ofa certain number of further universal parameters, namely the slopes or curvatures in the temperature dependence of the local response functions the low temperature limit, which vanish altogether in a conventional BCS description of isotropic s-wave pairing. All these parameters are calculated analyticallyfor a large variety of model pairing states and discussed with respect to their experimental observability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 10, 1159 (1957).

    Google Scholar 

  2. B. Mühlschlegel, Z. Phys. 155, 313 (1959).

    Google Scholar 

  3. D. D. Osheroff, D. M. Lee, and R. C. Richardson, Phys. Rev. Lett. 29, 920 (1972).

    Google Scholar 

  4. A. J. Leggett, Rev. Mod. Phys. 47, 331 (1975).

    Google Scholar 

  5. J. C. Wheatley, Rev. Mod. Phys. 47, 415 (1976).

    Google Scholar 

  6. D. Vollhardt and P. Wölfle, The Superfluid Phases of Helium 3, Taylor and Francis, London, 1990.

  7. CeCu2Si2: F. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W. Franz, and J. Schäfer, Phys. Rev. Lett. 43, 1892 (1979).

    Google Scholar 

  8. UBe13: H. R. Ott, H. Rudigier, Z. Fisk, and J. L. Smith, Phys. Rev. Lett. 50, 1595 (1983).

    Google Scholar 

  9. UPt3: G. Stewart, Z. Fisk, J. O. Willis, and J. L. Smith, Phys. Rev. Lett. 52, 679 (1984).

    Google Scholar 

  10. J. G. Bednorz and K. A. Müller, Z. Phys. B 64 189 (1986).

    Google Scholar 

  11. for a recent review see for example: C. C. Tsuei and J. R. Kirtley, Rev. Mod. Phys. 72, 969 (2000).

    Google Scholar 

  12. Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J. G. Bednorz, and F. Lichtenberg, Nature 372, 532 (1984).

    Google Scholar 

  13. P. W. Anderson and P. Morel, Phys. Rev. 123, 1911 (1961).

    Google Scholar 

  14. R. Balian and N. R. Werthamer, Phys. Rev. 131, 1553 (1963).

    Google Scholar 

  15. H. R. Ott, H. Rudigier, T. M. Rice, K. Ueda, Z. Fisk, and J. L. Smith, Phys. Rev. Lett. 52, 1915 (1984).

    Google Scholar 

  16. P. J. Hirschfeld, P. Wölfle, and D. Einzel, Phys. Rev. B 37, 83 (1988).

    Google Scholar 

  17. K. A. Park and R. Joynt, Phys. Rev. Lett. 74, 4734 (1995).

    Google Scholar 

  18. J. A. Sauls, J. Low Temp. Phys. 95, 153 (1994); Adv. Phys. 43, 153 (1994).

    Google Scholar 

  19. M. Sigrist and T. M. Rice, Z. Phys. 68, 9 (1987).

    Google Scholar 

  20. T. M. Rice and M. Sigrist, J. Phys. C 7, L643 (1997).

    Google Scholar 

  21. Y. Hascgawa, K. Machida, and M. Ozaki, J. Phys. Soc. Jpn. 69, 336 (2000).

    Google Scholar 

  22. G. E. Volovik and L. P. Gor'kov, Sov. Phys. JETP 61, 843 (1985).

    Google Scholar 

  23. E. I. Blount, Phys. Rev. 32, 2935 (1985).

    Google Scholar 

  24. D. Einzel, Superconductivity and Superfluidity, Lexikon der Physik, pgs. 228–235, Spektrum Akademischer Verlag, Heidelberg, 2000.

    Google Scholar 

  25. K. Yosida, Phys. Rev. 110, 769 (1958).

    Google Scholar 

  26. H. Tou, Y. Kitoka, K. Asayama, N. Kimura, Y. Onuki, E. Yamamoto, and K. Maezawa, Phys. Rev. Lett., 77 1374 (1996)

    Google Scholar 

  27. K. Ishida, H. Mukuda, Y. Kitoka, K. Asayama, Z. Q. Mao, Y. Mori, and Y. Maeno, Nature 396, 658 (1998)

    Google Scholar 

  28. D. Einzel, P. J. Hirschfeld, F. Gross, B. S. Chadrasekhar, K. Andres, H. R. Ott, J. Beuers, Z. Fisk, and J. L. Smith, Phys. Rev. Lett. 56, 2513 (1986).

    Google Scholar 

  29. B. S. Chadrasekhar and D. Einzel, Ann. Phys. 2, 535 (1993).

    Google Scholar 

  30. D. Einzel, P. J. Hirschfeld, F. Gross, B. S. Chadrasekhar, K. Andres, H. R. Ott, J. Beuers, Z. Fisk, and J. L. Smith, Phys. Rev. Lett. 56, 2513 (1986).

    Google Scholar 

  31. F. Gross-Alltag, B. S. Chandrasekhar, D. Einzel, P. J. Hirschfeld, and K. Andres, Z. Phys. B 82, 243 (1991).

    Google Scholar 

  32. D. Einzel and I. Schürrer, J. Low Temp. Phys. 117, 15 (1999) and references therein.

    Google Scholar 

  33. W. P. Halperin, C. W. Archie, F. B. Rasmussen, T. A. Alvesalo, and R. C. Richardson, Phys. Rev. B 13, 2124 (1976).

    Google Scholar 

  34. K. A. Moler, Phys. Rev. Lett. 73, 2744 (1994).

    Google Scholar 

  35. Yuxing Wang, B. Revaz, A. Erb, and A. Junod, Phys. Rev. B 63, 94508 (2001), A. Junod, private communication.

    Google Scholar 

  36. A. Janossy, T. Feher, G. Oszlanyi, and G. V. M. Williams, Phys. Rev. Lett. 79, 2726 (1997).

    Google Scholar 

  37. W. N. Hardy, D. A. Bonn, D. C. Morgan, Ruixing Liang, and Kuan Zhang, Phys. Rev. Lett. 70, 3999 (1993).

    Google Scholar 

  38. S. Schoettl, E. Schuberth, K. Flachbart, J. Hufnagl, and E. Bucher, Phys. Rev. Lett. 82, 2378 (1999).

    Google Scholar 

  39. S. Nishizaki, Y. Maeno, and Z. Q. Mao, J. Phys. Soc. Jpn. 69, 572 (2000).

    Google Scholar 

  40. D. Rainer and J. W. Serene, Phys. Reports, 101, 221 (1983).

    Google Scholar 

  41. W. C. Wu and R. Joynt, Phys. Rev. B 64, 100507 (2001).

    Google Scholar 

  42. K. Izawa, H. Takahashi, H. Yamaguchi, Y. Matsuda, M. Suzuki, T. Sasaki, T. Fukase, Y. Yoshida, R. Settai, and Y. Onuki, Phys. Rev. Lett. 86, 2653 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Einzel, D. Universal Parameters in the Response of Unconventional Superconductors. Journal of Low Temperature Physics 126, 867–879 (2002). https://doi.org/10.1023/A:1013886406749

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013886406749

Keywords

Navigation